National Exams December 2017

98-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK exam.
 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Marking Scheme

1.	20 marks total	(4 parts, 5 marks each)
2.	20 marks total	(4 parts, 5 marks each)
3.	20 marks total	(4 parts, 5 marks each)
4.	20 marks total	(4 parts, 5 marks each)
5.	20 marks total	(4 parts, 5 marks each)
6.	20 marks total	(4 parts, 5 marks each)
7.	20 marks total	(4 parts, 5 marks each)

Question 1 (20 marks)

Figure 1. All diodes have a forward voltage drop V_D=0.7V.

The circuit shown in Figure 1 is in steady state:

- a) Find an expression for V_0 as a function of V_s when D_1 is in forward bias.
- b) Sketch V_s and V_o as a function of time, indicating peak voltages.
- c) Sketch V_R, as a function of time, indicating peak voltages.
- d) Which resistor has the largest peak power dissipation? What power rating would you choose for this resistor?

Question 2 (20 marks)

Figure 2. I=500 μ A, k_n '(W/L)=1 mA/V², $|V_t|$ =1.5V, V_A =75V

For the circuit shown in Figure 2:

- a) Find V_D, V_G, and V_{GS}.
- b) Draw a small signal equivalent circuit and find the model parameter values.
- c) Find the input and output resistances of the circuit.
- d) Find the open circuit voltage gain for the amplifier and the loaded voltage gain.

Question 3 (20 marks)

Figure 3. The operational amplifier saturates at \pm 10V. The DC input offset voltage, V_{os} as shown is 10mV.

For the circuit shown in Figure 3:

- a) Find the circuit DC gain.
- b) Find the circuit AC gain.
- c) Sketch the frequency response of the circuit. Find the 3dB frequency and unity gain bandwidth for this circuit.
- d) What is the effect of the input offset on the available output voltage swing?

Question 4(20 marks)

Figure 4. I=1mA, $\beta=100$, $V_A=100V$, $V_T=25mV$.

For the circuit shown in Figure 4:

- a) Find V_C , V_B and V_E .
- b) Draw a small signal equivalent circuit and find the model parameter values.
- c) Find the small signal input resistance Ri and output resistance Ro.
- d) Find the open circuit voltage gain for the amplifier and the loaded voltage gain.

Question 5 (20 marks)

Figure 5. R=10k Ω , C=15 nF

For the circuit shown in Figure 5:

- a) Find expressions for voltages V_A and V_B .
- b) Find an expression for the loop gain V₀/V_C.
- c) At what frequency would the circuit oscillate?
- d) What value of RF would cause oscillation?

Question 6 (20 marks)

Consider a CMOS technology in which an inverter with a minimum gate length L=0.5 μ m has a symmetric transfer function for NMOS W/L = 1.5 and PMOS W/L =6.

- a) Write a Boolean expression for a 3 input NOR gate and sketch the transistor level gate schematic.
- b) Specify sizes (W/L) for all transistors in order to achieve current-driving capability equal to that of the basic inverter.
- c) Repeat a) and b) for a three input NAND gate.
- d) For the NAND gate in c), find the ratio of maximum to minimum available current to charge and discharge a load.

Question 7 (20 marks)

Figure 6.

For the circuit shown in Figure 6, initially S_B is closed (ground) and the capacitors are connected to V_A through S_1 - S_5 , S_T , and S_A as shown. At t=0 S_B is opened, S_T and S_1 - S_5 are connected to ground, and S_A is connected to V_{ref} =4V.

- a) What is the voltage at V_X just after t=0?
- b) If switch S_5 is connected to V_{ref} while S_T and S_1 - S_4 connect to ground, what is the change in V_X ?
- c) Sequentially connecting capacitors to V_{ref} can be used to generate a binary representation of V_A . What is the full scale voltage that can be converted? What is the resolution of the conversion?
- d) If input $V_A=1.5$ V, which switches will be high (connected to V_{ref}) when conversion is complete?