National Exams May 2018

04-BIO-A2, Process Dynamics & Control

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.

 The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. Most questions require an answer in essay format. Clarity and organization of the answer are important.

PROBLEM 1 (20%)

For the system: $G(s) = \frac{10}{s^2 + s + 9}$

10% 1- Plot the Bode plots (show values at extreme values of frequency i.e. 0 and infinity and show general shape)

10% 2- Determine exactly the phase margin, PM

PROBLEM 2 (20%)

The transfer function between the flow (manipulated variable) into a tank and the liquid level (controlled variable) $G_p(s) = \frac{1}{s}$. The process is controlled by a proportional controller with gain K. The level is measured by a sensor with transfer function $G_m = \frac{s-1}{s^2+2s+1}$.

10% 1- Draw the block diagram and find the closed loop transfer function.

20% 2- Find the range of values of K for which the closed loop is stable.

PROBLEM 3 (20%)

A process described by $G(s) = \frac{e^{-0.5s}}{s(s+1)}$ is controlled by a proportional controller with gain K.

10% 1- Find the Phase Margin and Gain Margin for K=1.

10% 2- Find the exact maximum of the controller gain K for stability.

PROBLEM 4 (20%)

A process is described by the following transfer function $G(s) = \frac{2(1+cs)}{(s+1)(s+2)}$

10% (a) Find the response to a unit step change as a function of c.

10% (b) Find the values of c for which there is an overshoot. Find the magnitude of the overshoot as a function of c.

PROBLEM 5 (20%)

The Calrod heating element shown in the drawing transfers heat largely by a radiation mechanism. If the rate of electrical energy input to the heater is Q and the rod temperature and ambient temperatures are, respectively, T and T_a, then an appropriate unsteady-state model for the system is

$$mC\frac{dT}{dt} = Q - k(T^4 - T_a^4)$$

m is the mass of the heater, C is specific heat and k is radiation coefficient.

(15%) a) Linearize and then find the transfer functions relating δT to δQ and δT to δT_a . (Be sure they are both in standard form, i.e. show gain and time constant.)

(5%) b) If you were to design a proportional controller to control T by manipulating Q, what will be the sign of the controller to guarantee stability? Justify your answer.

PROBLEM #6 (20% total)

A process described by the following transfer function:

$$G(s) = \frac{5e^{-10s}}{10s+1}$$

Is to be controlled by an IMC (Internal Model Controller) controller. Time is in seconds.

- (10%) a) Show the block diagram of the closed loop. Calculate the IMC controller Gc* and the classical feedback controller equivalent Gc (without assuming Pade approximation at this point). Assume that the IMC filter parameter is τ_C=20 sec. Is the resulting Gc of PID form?
- (10%) b) Calculate the closed loop response for the controlled variable δC(t) for a unit step change in set point for the controller in item a) where Pade was not assumed and the model is assumed to be perfect.

PROBLEM #7 (20% total)

A first order process is given by

$$G_p(s) = \frac{1}{s+5}$$

This process is controlled by a proportional-derivative (PI) controller given by:

$$G_c = k_c (1 + \frac{1}{s})$$

- (10%) (a) Compute values of kc that will result in closed loop stability.
- (10%) (b) Calculate the closed loop response to a unit step change in set point with $k_c=1$.

PROBLEM 8 (20%)

The dynamic response of the reactant concentration in a CSTR reactor, C_A , to a change in inlet Concentration (mol/volume), C_{A_0} , has to be evaluated.

The reactor is operated with constant volume V and isothermal conditions. The density ρ is constant.

The reaction rate (mol/time/volume) is: $r_A = kC_A^2$

The volumetric flowrate (volume/time) is F.

- (10%) (a)Derive a mathematical model to describe C_A(t) and compute steady state conditions for concentration.
- (10%) (b)Compute a transfer function $\delta C_A/\delta C_{A_0}$ (where δ indicates deviation variables) when the system is operated around the steady state computed in (a).