National Exams May 2018

17-Phys-A5-B Analog and Digital Electronic Circuits

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Answer all SIX (6) questions.
- 4. Please start each question on a new page and clearly identify the question number and part number, e.g. Q1(a).
- 5. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

Marking Scheme

- 1. 15 marks
- 2. (a) 10 marks; (b) 10 marks;
- 3. (a) 10 marks; (b) 10 marks
- 4. 15 marks
- 5. (a) 5 marks; (b) 10 marks
- 6. (a) 10 marks; (b) 5 marks

Question 1

In the circuit shown in Fig.1 assume V_{BE}= 0.7V, β =100 and neglect Early effect (V_A = ∞) for all transistors. R₁= 2 k Ω and R₂= 3 k Ω .

(a) Calculate I_{C1}, I_{C2} and I_{C3}.

Fig.1

Question 2

Consider the circuit shown in Fig.2. R_1 = 2 $k\Omega$, R_2 = 15 $k\Omega$, R_3 = 5 $k\Omega$, R_4 = 1 $k\Omega$, C_1 = 100pF, and C_2 = 100nF

- (a) Derive the expression for the voltage gain, v_o/v_i . Assume an ideal Op-Amp.
- (b) Sketch the Bode plot (dB vs frequency in rad/sec) for the magnitude of the transfer function, v_o/v_i .

Question 3:

Figure 3 shows a common source amplifier using PMOS transistor M_1 . Consider I_{bias} = 1mA, I_{D3} = 1mA, and C_L = 50fF, Assume all transistors are in saturation region and that $(\frac{W}{L})_1 = (\frac{W}{L})_2 = 4.(\frac{W}{L})_b = 40.(\frac{W}{L})_3 = 80$, $\mu_n C_{ox} = \mu_p C_{ox} = 100 \mu A/V^2$, $V_{An} = |V_{Ap}| = \infty$ ($r_{on} = r_{op} = \infty$), $C_{gs} = 50$ fF and $C_{gd} = 20$ fF for all the transistors.

- (a) Calculate the low frequency gain $A_v = v_o/v_{sig}$.
- (b) Calculate the bandwidth (the 3-dB frequency) of this amplifier.

Question 4

For the amplifier, in Fig. 4, it is desired to obtain a precise gain $v_{\rm O}/v_{\rm S}$ using feedback. Assume that $g_{m1}=g_{m2}\neq g_{m3}$, and $r_{o1}=r_{o2}=r_{o3}=\infty$. I_{bias} is an ideal current source. Assume all transistors are in saturation region.

(a) Use the methods of feedback analysis to find the expression of the gain v_0/v_s .

Fig. 4

Question 5

Consider the 4-bit digital-to-analog converter (DAC) using a binary-resistive ladder as shown in Fig. 5. Assume an ideal Op-Amp and R_f =R/2.

- (a) Find the expressions of the output voltage V_{O}
- (b) Calculate V_0 when R = $10k\Omega$, V_{REF} = 10 V and the applied binary word is 1101.

Question 6

The circuit in Fig.6 shows the pull-up network (PUN) of a CMOS logic gate that implements the function Y.

- (a) Find the pull-down network (PDN) that corresponds to the PUN shown in Fig. 6 and hence the complete CMOS logic circuit. Explain your work.
- (b) Write the Boolean function realized.

