# National Exams May 2016

07-Elec-B5, Advanced Electronics

## 3 hours duration

## Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**. Any non-communicating calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

(6 points)

## **QUESTION (1)**

In the following push-pull output stage, assume that each transistors conducts a negligible amount of current around  $v_{IN} = 0$ V.  $Q_1$  conducts for the positive half of the input voltage and  $Q_2$  conducts for the negative half. Assuming that  $V_{CC} = |V_{EE}| = 10$ V,  $R_L = 8\Omega$ , and the input voltage is sinusoidal, determine the followings:

- a) The maximum power that can be delivered to the load,  $R_L$ . (5 points)
- b) The maximum power dissipated by transistor  $Q_1$ . Assume that the base current is negligible. (10 points)
- c) The maximum power efficiency of this pushpull stage? Neglect the power drawn by the bias current sources  $I_1$  and  $I_2$ . (5 points)



#### **QUESTION (2)**

The following equivalent common source amplifier is already biased properly (no need to perform a DC analysis).



- a) Find the mid-band voltage gain  $v_{OUT}/v_i$ .
- b) What is the new mid-band voltage gain,  $v_{OUT}/v_i$  if capacitor  $C_2$  is removed? (6 points)

c) What is the new 3dB frequency  $f_H$  if capacitor  $C_2$  is removed? (8 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[ (v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
triode region  
$$i_{DS} = \frac{1}{2} K \left( v_{GS} - V_{TH} \right)^2 \left( 1 + \lambda v_{DS} \right)$$
saturation region

#### QUESTION (3) (Razavi, Example 9.9, pg. 405)

The bipolar circuit is biased with a current of  $I_1 = 1$ mA and  $V_{b1} = 5$ V. Determine the small signal mid-band voltage gain *vout/vin*. (20 points)  $V_{b1} \sim Q_2$   $V_{IN} \sim Q_1$ 

Given:

 $V_{DD} = 10 \text{V}$  $\beta = 100$  $V_A = 5 \text{ V}$ 

### **QUESTION (4)**

In the following tuned amplifier equivalent circuit, transistor  $M_1$  is already biased properly with  $V_{DD} = 10$  V and  $I_{bias} = 2$  mA.

The transistor parameters are given as  $K = 1 \text{ mA/V}^2$ ,  $V_{TH} = 1 \text{ V}$ ,  $C_{gs} = 10 \text{ pF}$ ,  $C_{gd} = 1 \text{ pF}$ , and  $\lambda = 0.$ 



- (4 points)

(8 points)

(8 points)

#### **QUESTION (5)**

Consider the following amplifier with a feedback circuit  $(R_1, C_1)$ .



Given: 
$$R_D = 3k \Omega$$
,  $C_S = C_1 = \infty$ ,  $R_2 = 20 k\Omega$   
 $|V_{DD}| = |V_{SS}| = 10 V$   
 $I_{bias} = 1 \text{ mA}$   
 $K = 1 \text{ mA/V}^2$ ,  $V_{TH} = 1 \text{ V}$ , and  $\lambda = 0$   
a) Determine the input and output resistance ( $R_{IN}$  and  $R_{OUT}$ ) if there is no feedback network (i.e.  $R_1 = \infty$ ).  
(8 points)

b) Determine the input and output resistance ( $R_{IN}$  and *ROUT*) if  $R_1 = 100 \text{ k}\Omega$ . (12 points)