16-CHEM-A1, PROCESS BALANCES and CHEMICAL THERMODYNAMICS #### **MAY 2019** ## **Three Hours Duration** #### **NOTES:** - 1) If doubt exists as to the interpretation of any question, you are urged to submit a clear statement of any assumptions made along with the answer paper. - 2) Property data required to solve a given problem are provided in the problem statement or are available in the recommended texts. If you are unable to locate the required data, do not let this prevent you from solving the rest of the problem. Even in the absence of property data, you still have the opportunity to provide a solution methodology. - 3) This is an open-book exam. Any non-communicating calculator is permitted. - 4) The examination is in two parts Part A (Questions 1 to 3): Process Balances Part B (Questions 4 and 6): Chemical Thermodynamics - 5) Answer TWO questions from Part A and TWO questions from Part B. - 6) FOUR questions constitute a complete paper. - 7) Each question is of equal value. # PART A: PROCESS MASS and ENERGY BALANCES - An air-conditioning plant is used to maintain a dry-bulb temperature of 27 °C and relative humidity of 50% in an auditorium. The air flow rate to the auditorium is 20,900 m³/hr at a dry-bulb temperature of 17 °C and relative humidity of 83.5%. The effluent air from the auditorium is partially recycled and mixed with the incoming fresh air, which is fed at a rate of 4,500 m³/hr at a dry-bulb temperature of 35 °C and relative humidity of 70%. The mixed air, which has a dry-bulb temperature of 29.5 °C and relative humidity of 54%, is passed through the air-conditioning plant to make it suitable for feeding to the auditorium. The total pressure can be assumed to be constant at 1 atm (101.325 kPa). - (a) [11 points] Calculate the moisture removed in the air-conditioning plant. - (b) [3 points] Calculate the moisture added in the auditorium. - (c) [11 points] Calculate the recycle ratio (moles of air recycled per mole of input fresh air) #### DATA: Absolute molar humidity of fresh air at 35 °C = 4.05×10^{-2} moles per mole of dry air Absolute molar humidity of mixed air at 29.5 °C = 2.25×10^{-2} moles per mole of dry air Absolute molar humidity of air entering the auditorium at $17 \, ^{\circ}\text{C} = 1.63 \times 10^{-2}$ moles per mole of dry air Absolute molar humidity of air leaving the auditorium at 27 °C = 1.81×10^{-2} moles per mole of dry air A mixture containing 75% iron pyrite (FeS₂) ore and 25% zinc sulfide (ZnS) ore by weight are burnt in burner. The pyrites yield 92% FeS₂ and the rest is gangue. The zinc sulfide ore contains 68% ZnS and the rest are inerts. A sample of the cinder product yields 3.5% sulfur with 70% of the sulfur in the cinder in the form of SO₃ absorbed in it and the rest is unoxidized FeS₂. The stochiometrically unbalanced reactions in the burner are as follows: $$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$$ $$FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_3$$ $$ZnS + O_2 \rightarrow ZnO + SO_2$$ - (a) [20 points] Calculate the amount of cinder product formed and its composition based on 100 kg of mixed charge to the burner. - (b) [5 points] Calculate the percentage of sulfur left in the cinder product based on the total sulfur charged. A sulfur burner in a sulfite pump mill burns 200 kg of pure sulfur per hour. The gas leaves the burner at 871 °C and they are cooled before being sent to an absorption tower. As a primary cooler, a waste heat boiler is employed for producing saturated steam at a pressure of 15 bars (absolute). The feed water to the boiler is available at 183 °C and the temperature of the gas mixture leave the boiler is 190 °C. Calculate the amount of steam produced in kg per hour assuming 10% excess air, 90% efficiency, complete combustion, no heat loss to the surroundings and no SO₃ formation. #### DATA: Standard molar specific heat capacity of SO₂ in kJ/kmol.K = $24.7706 + 62.9841 \times 10^{-3} \text{ T} - 4.42582 \times 10^{-5} \text{ T}^2 + 11.122 \times 10^{-9} \text{ T}^3$ Standard molar specific heat capacity of O_2 in kJ/kmol.K = $26.0257 + 11.7551 \times 10^{-3} T - 2.3426 \times 10^{-6} T^2 - 56.23 \times 10^{-11} T^3$ Standard molar specific heat capacity of N_2 in kJ/kmol.K = 29.5909 + 51.141 x 10^{-4} T - 1.31829 x 10^{-5} T² - 49.68 x 10^{-10} T³ Saturation temperature of steam at 15 bars pressure = 198 °C Latent heat of vaporization of water at 15 bars pressure = 1945 kJ/kg Specific heat capacity of water = 4.1868 kJ/kg.K # PART B: CHEMICAL THERMODYNAMICS - Water gas, available at a temperature of 500 °C and a pressure 4 bar, has the following composition: 70.4 grams of hydrogen, 23.68 grams of methane, 35.84 grams of ethylene, 66 grams of carbon dioxide, 94.92 grams of carbon monoxide and 50.4 grams of nitrogen. - (a) [5 points] Calculate the volume of water gas if it behaves as an ideal gas. - (b) [20 points] Calculate the volume of water gas if it follows van der Waals equation of state. ### DATA: | Component | Formula | Critical Temperature (K) | Critical Pressure (bar) | |-----------------|-------------------------------|--------------------------|-------------------------| | Hydrogen | H ₂ | 32.2 | 12.97 | | Methane | CH ₄ | 190.56 | 45.99 | | Ethylene | C ₂ H ₄ | 282.34 | 50.41 | | Carbon Monoxide | СО | 132.91 | 34.99 | | Carbon Dioxide | CO ₂ | 304.1 | 73.75 | | Nitrogen | N ₂ | 126.9 | 33.94 | Pyrites are roasted in a roaster plant for making sulfuric acid. The gases leave the roaster at 502 °C with the mass composition: 3.57% SO₂, 1.08% O₂, 0.18% SO₃ and the rest N₂. Calculate the heat content of 1 kmol of gas mixture over 25 °C. ### DATA: Standard molar specific heat capacity of SO₂ in kJ/kmol.K = 24.7706 + 62.9841 x 10^{-3} T - 4.42582 x 10^{-5} T² + 11.122 x 10^{-9} T³ Standard molar specific heat capacity of O_2 in kJ/kmol.K = $26.0257 + 11.7551 \times 10^{-3} \text{ T} - 2.3426 \times 10^{-6} \text{ T}^2 - 56.23 \times 10^{-11} \text{ T}^3$ Standard molar specific heat capacity of SO₃ in kJ/kmol.K = $22.0376 + 12.1624 \times 10^{-2} \text{ T} - 9.18673 \times 10^{-5} \text{ T}^2 - 24.3691 \times 10^{-9} \text{ T}^3$ Standard molar specific heat capacity of N_2 in kJ/kmol.K = 29.5909 + 51.141 x 10^{-4} T - 1.31829 x 10^{-5} T² - 49.68 x 10^{-10} T³ 3) 2 moles of methane (CH₄) and 3 moles of water react and gaseous mixture containing CH₄, H₂O, CO, CO₂ and H₂ is obtained. Calculate the equilibrium composition of the mixture at 1000 K and 1 atmosphere. ### DATA: Standard Gibbs free energy of formation of CH₄ at 1000 K = 19.3 kJ/mole Standard Gibbs free energy of formation of H₂O at 1000 K = - 192.72 kJ/mole Standard Gibbs free energy of formation of CO at 1000 K = - 200.715 kJ/mole Standard Gibbs free energy of formation of CO₂ at 1000 K = - 396.11 kJ/mole Standard Gibbs free energy of formation of H₂ at 1000 K = 0 kJ/mole | S | |-----------------------| | 7 | | (I) | | \approx | | U | | lement | | Ш | | đ١ | | of the | | Ţ | | _ | | _ | | Table | | 7 | | K | | $\tilde{\mathcal{L}}$ | | ١ | | 9. | | eriodic | | O | | Ţ | | Peric | | | | The | | 76 | | | | • | | | | | | | | | | | | - | | | | | | | | | |------|--|--------------------------------------|---------------------------------------|----|-----------------|--------|-------|------------------|-----|--------|----------------|----------|--------|----------------------|-----|--------| | 18 | Helium 2 2 He 4.00 | Neon 10 Ne 20.18 | Argen
18
89.95 | | Krypton
36 | 궃 | 83.80 | Xenon
54 | Xe | 131.29 | Radon
86 | Ru | (222) | Ununodium
118 | Ono | (294) | | | 17 | Fluorine 9 F 19.00 | CI
CI
35.45 | | Bromine
35 | ā | 79.90 | lodine
53 | - 8 | 126.90 | Astaline
85 | Αt | (210) | Unursepium
117 | Ous | (2947) | | | 16 | Oxygen 8 O | Suffer
16
S
32.07 | | Selenium
34 | Se | 78.96 | Tellurium
52 | Te | 127.60 | Polonium
84 | Ъ | (209) | Ununhexium
116 | Unh | (293) | | | 15 | Nitrogen 7 N N 14.01 | Phosphorus 15 P 30.97 | | Arsenic
33 | As | 74.92 | Antimony
51 | Sb | 121.76 | Bismuth
83 | ö | 208.98 | Ununpentium
115 | Uup | (288) | | | 4 | C C 12.01 | Silicon
14
Si
28.09 | | Germanium
32 | Ge | 72.61 | _i
20 | Sn | 118.71 | Lead
82 | Pb | 207.20 | Ununquadium
114 | Dnd | (289) | | ol . | 13 | Boron 5 5 | Aluminum
13
A I
26.98 | | Galfium
31 | Ga | 69.72 | Indium
49 | 드 | 114.82 | Thallium
61 | F | 204.38 | Ununtrium
113 | Uut | (284) | | | # | Mass | | 12 | 2Inc
30 | Zu | 65.39 | Cadmium
48 | g | 112.41 | Mercury
80 | H | 200.59 | Copernicium
112 | ပ် | (285) | | 7 | Atomic # | — Avg. Mass | | 7 | Copper
29 | ٦
ک | 63.55 | Silver
47 | Ag | 107.87 | Gold
79 | Αn | 196.97 | Roentgenium
111 | Rg | (280) | | | only
O ¢ | 5 9 ↔ | | 10 | Nickel
28 | Z | 58.69 | Palladium
46 | Pd | 106.42 | Platinum
78 | <u>7</u> | 195.08 | Darmstadtium
110 | Ds | (281) | | 200 | ✓ Mercury № | 200.59 | | o | Cobail
27 | ဝိ | 58.93 | Rhodium
45 | R | 102.91 | lridium
77 | <u>=</u> | 192.22 | Meitnerlum
109 | Mt | (276) | | 2 | me pol | | -:: | œ | Iron
26 | Fe | 55.85 | Rutherium
44 | Ru | 101.07 | Osmium
76 | ő | 190.23 | Hassium
108 | Hs | (270) | | | Element name. | | | 7 | Manganese
25 | Mn | 54.94 | Technelium
43 | Тc | (86) | Rhenium
75 | Re | 186.21 | Bohrium
107 | Bh | (272) | | | E | | | 9 | Chromium
24 | င် | 52.00 | Molybdenum
42 | Mo | 95.94 | Tungsten 74 | > | 183.84 | Seaborgium
106 | Sg | (271) | | D#5 | netals
als
ni-metal) | | | S | Vanadium
23 | > | 50.94 | Niobium
41 | qN | 92.91 | Tantalum
73 | Ta | 180.95 | Dubnium
105 | | | | | Alkali metals
Alkaline earth metals
Transition metals
Other metals
Metalloids (semi-metal) | Nonmetals
Halogens
Noble gases | | 4 | Titanium
22 | F | 47.88 | Zirconium
40 | Zr | 91.22 | Hafnium
72 | Ŧ | 178.49 | Rutherfordium
104 | Ŗ | (267) | | | Alka
Trai | N H N | | က | Scandium
21 | Sc | 44.96 | 7tmum
39 | > | 88.91 | Lutetium
71 | Γn | 174.97 | Lawrencium
103 | בֿ | (262) | | | | | | | | | | | | | 57-70 | * | | 89,102 | * | | | | 8 | Beryllium
4
Be
9.01 | Magnesium
12
Mg
24.31 | | Calcium
20 | Ca | 40.08 | Stronlium | Sr | 87.62 | Barium
56 | Ba | 137.33 | Radium
88 | Ra | (226) | | ۳ | Hydrogen 1.01 | Lithium
3
Li
6.94 | 11
Na
22.99 | 9. | Potassium
19 | ¥ | 39.10 | Rubidium
37 | Rb | 85.47 | Cesium
55 | Cs | 132.91 | Francium
87 | Ţ | (223) | *lanthanides | Lanthanum 57
La 138.91 | Cenum
58
Ce
140.12 | Praseodymium 59 Pr 140.91 | Neodymium
60
Nd
144.24 | Promethium 61 Pm (145) | Samanum
62
Sm
150.36 | Europium
63
Eu
151.97 | Gadolinium
64
Gd
157.25 | Terbium 65 Tb 158.93 | Dy
162.50 | Holmium 67 HO 164.93 | 68
68
Er
167.26 | Thulium 69 Tm 168.93 | Ytterbum 70 | |--------------|---------------------------|-----------------------------|---------------------------|--|------------------------|--------------------------------------|---------------------------------------|----------------------------------|----------------------|-------------------------|----------------------|---------------------------------|-----------------------------------|--------------------------------| | **actinides | Actinium 89 AC (227) | Thorium 90 Th 232.04 | Protactinium 91 Pa 231.04 | U 238.03 | 93
Np
(237) | Plutonium
94
Pu
(244) | Americium
95
Am
(243) | Curium
96
Cm
(247) | 97
BK
(247) | Saiffornium 98 Cf (251) | 99
Es
Es | Fermium 100 Fm (257) | Mendelevium
101
Md
(258) | Nobelium
102
No
(259) |