National Exams May 2018

16-Mec-A3, SYSTEM ANALYSIS AND CONTROL

3 hours duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use a Casio <u>or</u> Sharp approved calculator. This is a <u>closed book</u> exam. No aids other than semi-log graph papers are permitted.
- 3. Any four (4) questions constitute a complete paper. Only the first four (4) questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Question 1:

A closed-loop control system is seen below;

- a) Determine the transfer function T(s) = Y(s) / R(s).
- b) Determine the poles and zeros of T(s).
- c) Use a unit step input, R(s) = 1/s and obtain the partial fraction expansion for Y(s).
- d) Predict the final value of y (t) for the unit step input.

Question 2:

A system is shown in the figure below;

a) Determine the steady – state error for a unit step input in terms of K and K_1 , where E(s) = R(s) - Y(s).

b) Select K_1 so that the steady-state error is zero.

Question 3:

A feedback control system has a characteristic equation

$$s^6 + 5s^5 + 14 s^4 + 40 s^3 + 64 s^2 + 80 s + 96 = 0$$

Determine whether the system is stable, and determine the values of the roots.

Question 4:

A unity negative feedback system has a transfer function

$$G(s) = K(s^{2} + 0.105625)$$

$$s(s^{2} + 1)$$

$$= K(s + j0.325)(s - j0.325)$$

$$s(s^{2} + 1)$$

Sketch the root locus as a function of *K*. Carefully calculate where the segments of the locus enter and leave the real axis.

Question 5:

A unity feedback control system has a transfer function

$$G(s) = \frac{K(s^2 + 6s + 12)}{s^2(s+1)}$$

We desire the dominant roots to have a damping ratio equal to 0.707. Find the gain K when this condition is satisfied. Show that the complex roots are $s = -2.3 \pm j2.3$ at this gain.

Question 6:

Sketch the Bode Diagram representation of the frequency response for the transfer functions;

a)
$$GH(s) = \underline{s-10}$$

 $s^2 + 6s + 10$

b)
$$GH(s) = 30(s+8)$$

 $5(s+2)(s+4)$

Table of Laplace Transforms