NATIONAL EXAMINATIONS DECEMBER 2016

04-BS-5 ADVANCED MATHEMATICS

3 Hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumption made.
2. Candidates may use one of the approved Casio or Sharp calculators. This is a Closed Book Exam. However, candidates are permitted to bring ONE aid sheet (8.5 "x 11 ") written on both sides.
3. Any five (5) questions constitute a complete paper. Only the first five answers as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme

1. (a) 16 marks; (b) 4 marks
2. (a) 15 marks; (b) 5 marks
3. (a) 5 marks; (b) 10 marks; (c) 5 marks
4. (a) 10 marks ; (b) 10 marks
5. 20 marks
6. (A) 6 marks; (b) 7 marks; (B) 7 marks
7. (a) 10 marks ; (b) 10 marks

1 (a).Consider the following differential equation:

$$
\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-y=0
$$

Find two linearly independent power series solutions about the ordinary point $\mathrm{x}=0$.
(b) Use the ratio test to prove that the two series obtained in (a) are convergent for all real values of x.
2. (a) Find the Fourier series expansion of the periodic function $\mathrm{F}(\mathrm{x})$ of period $\mathrm{p}=2 \pi$.

$$
\mathrm{F}(\mathrm{x})=\mathrm{x}^{2} ; \quad-\pi \leq x \leq \pi
$$

(b) Use the result obtained in (a) to find the Fourier series expansion of the periodic function $\mathrm{G}(\mathrm{x})$ of period $\mathrm{p}=2 \pi$.

$$
\mathrm{G}(\mathrm{x})=\mathrm{x} \quad ; \quad-\pi<x<\pi
$$

3. Consider the following function where a is a positive constant

$$
\mathrm{f}(\mathrm{x})=\begin{array}{ll}
\frac{1}{a}\left(1+\frac{x}{2 a}\right) & -2 a \leq x<0 \\
\frac{1}{a}\left(1-\frac{x}{2 a}\right) & 0 \leq x \leq 2 a
\end{array}
$$

Note that $f(x)=0$ for all the other values of x.
(a) Compute the area bounded by $\mathrm{f}(\mathrm{x})$ and the x -axis. Graph $\mathrm{f}(\mathrm{x})$ against x for $a=1.0$ and $a=0.25$.
(b) Find the Fourier transform $F(\omega)$ of $f(x)$
(c) Graph $\mathrm{F}(\omega)$ against ω for the same two values of a mentioned in (a).

Explain what happens to $\mathrm{f}(\mathrm{x})$ and $\mathrm{F}(\omega)$ when a tends to zero.
Note: $\quad \mathrm{F}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-i \omega x) d x$
4.(A) Prove that the coefficients α and β of the least-squares parabola $Y=\alpha X+\beta X^{2}$ that fits the set of n points $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ can be obtained as follows

$$
\begin{aligned}
& \alpha=\frac{\left\{\sum_{i=1}^{i=n} X_{i} Y_{i}\right\}\left\{\sum_{i=1}^{i=n} X_{i}^{4}\right\}-\left\{\sum_{i=1}^{i=n} X_{i}^{2} Y_{i}\right\}\left\{\sum_{i=1}^{i=n} X_{i}^{3}\right\}}{\left\{\sum_{i=1}^{i=n} X_{i}^{2}\right\}\left\{\sum_{i=1}^{i=n} X_{i}^{4}\right\}-\left\{\sum_{i=1}^{i=n} X_{i}^{3}\right\}^{2}} ; \\
& \beta=\frac{\left\{\sum_{i=1}^{i=n} X_{i}^{2}\right\}\left\{\sum_{i=1}^{i=n} X_{i}^{2} Y_{i}\right\}-\left\{\sum_{i=1}^{i=n} X_{i}^{3}\right\}\left\{\sum_{i=1}^{i=n} X_{i} Y_{i}\right\}}{\left\{\sum_{i=1}^{i=n} X_{i}^{2}\right\}\left\{\sum_{i=1}^{i=n} X_{i}^{4}\right\}-\left\{\sum_{i=1}^{i=n} X_{i}^{3}\right\}^{2}}
\end{aligned}
$$

4.(B) Use the method of Lagrange to find the third degree polynomial that fits the following set of four points.

x	-3	-2	1	2
$\mathrm{~F}(\mathrm{x})$	0	4	-8	0

5.The following results were obtained in a certain experiment.

x	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$\mathrm{f}(\mathrm{x})$	55	64	76	86	100	110	124	135	145

Use Romberg's algorithm to find an approximate value of the area bounded by the unknown function represented by the table and the lines $\mathrm{x}=0, \mathrm{x}=4.0$ and the x -axis.
Hint: The Romberg algorithm produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_{a}^{b} f(x) d x$. The array is denoted by the following notation.

$$
\mathrm{R}(1,1)
$$

$R(2,1)$	$R(2,2)$
$R(3,1)$	$R(3,2)$
$R(4,1)$	$R(4,2)$

$$
\mathrm{R}(4,1)
$$

$$
\mathrm{R}(4,2)
$$

$$
\begin{equation*}
\mathrm{R}(4,3) \quad \mathrm{R}(4,4) \tag{3,3}
\end{equation*}
$$

where

$$
\begin{aligned}
& R(1,1)=\frac{H_{1}}{2}[f(a)+f(b)] \\
& R(k,, 1)=\frac{1}{2}\left[R(k-1,1)+H_{k-1} \sum_{n=1}^{n=2^{k-2}} f\left(a+(2 n-1) H_{k}\right)\right] ; \quad H_{k}=\frac{b-a}{2^{k-1}} \\
& R(k, j)=R(k, j-1)+\frac{R(k, j-1)-R(k-1, j-1)}{4^{j-1}-1}
\end{aligned}
$$

6.(A)(a) One root of the equation $5^{x}+x^{2}-16.0=0$ lies between $\mathrm{a}=1.0$. and $\mathrm{b}=2.0$. Use the method of bisection three times to find a better approximation of this root. (Note: Carry five significant digits in your calculations).
6.(b)Use the following iterative formula twice to find a better approximation of the root of the equation given in (a). Take as an initial value the final result you obtained in (a). (Note: Carry seven significant digits in your calculations).

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{(1)}\left(x_{n}\right)-\frac{f\left(x_{n}\right) f^{(2)}\left(x_{n}\right)}{2 f^{(1)}\left(x_{n}\right)}}
$$

[Hint: Let $f(x)=5^{x}+x^{2}-16$. Note that $\left.f^{(1)}(x)\right)$ represents the first derivative of $f(x)$. Similarly $f^{(2)}(x)$ represents the second derivative of $f(x)$.].
6.(B) Consider the equation $x^{3}-6 x^{2}+9 x-3=0$. This equation can be transformed into the form $x=F(x)$ in several ways. Use fixed point iteration five times to show that the form $x=\left(x^{3}+9 x-3\right) /(6 x)$ has a root close to $x_{0}=1.6$. (Note: Carry seven significant digits in your calculations).
7. The symmetric positive definite matrix $A=\left[\begin{array}{ccc}26 & -13 & 28 \\ -13 & 29 & -14 \\ 28 & -14 & 49\end{array}\right]$ can be written as the product of an upper triangular mätrix $\mathrm{U}=\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$ and its transpose U^{T}, that is $A=U U^{T}$.
(a) Find U and U^{T}.
(b) Use U and U^{T} to solve the following system of three linear equations:

$$
\begin{aligned}
26 x-13 y+28 z= & 17 \\
-13 x+29 y-14 z= & 14 \\
28 x-14 y+49 z= & 56
\end{aligned}
$$

