National Exams May 2019

17-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- This is an OPEN BOOK exam.
 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Marking Scheme

- 1. 20 marks total (4 parts, 5 marks each)
- 2. 20 marks total (3 parts, a)7 marks, b)7 marks, c) 6 marks)
- 3. 20 marks total (4 parts, 5 marks each)
- 4. 20 marks total (4 parts, 5 marks each)
- 5. 20 marks total (3 parts, a) 6 marks, b) 7marks, c) 7 marks)
- 6. 20 marks total (4 parts, 5 marks each)
- 7. 20 marks total (4 parts, 5 marks each)

Question 1 (20 marks)

Figure 1. All diodes have a forward voltage drop $V_D=0.7V$.

The circuit shown in Figure 1 is in steady state:

- a) Sketch V_s and V_o as a function of time, indicating peak voltages.
- b) What maximum reverse voltage rating would you choose for the diodes?
- c) Which resistor has the largest peak power dissipation? What power rating would you choose for this resistor?
- d) Sketch current Is as a function of time, indicating peak values.

Question 2 (20 marks)

Figure 2. V_{BE} =0.7V for I_C =1mA, β =100, V_T =25mV, V_A =100V.

For the circuit shown in Figure 2:

- a) Choose R_1 and R_2 so I_0 is $100~\mu A$
- b) Find the small signal output resistance of the circuit.
- c) If $R_2=0\Omega$, repeat a) and b).

Question 3 (20 marks)

Figure 3. $+V_s=15V$, $-V_s=-15V$, $I_s=100mA$ from each supply, $V_{in}=1V@1kHz$.

For the circuit shown in Figure 3:

- a) Find voltage gain |A_v| and power gain |A_p| in dB
- b) Find the efficiency of the amplifier
- c) Draw an equivalent circuit for the amplifier including component values
- d) What is the maximum input possible without clipping of the output waveform?

Question 4(20 marks)

Figure 4. $k_n'(W/L)=0.5mA/V^2$, $V_t=2V$, $V_A=50V$

For the circuit shown in Figure 4:

- a) Choose values for R_D and R_S to provide $I_D=1\,\text{mA}$.
- b) Draw a small signal equivalent circuit and evaluate the model parameter values.
- c) Find the small signal input resistance R_i and output resistance Ro.
- d) Find the voltage gain for the amplifier.

Question 5 (20 marks)

Figure 5.

The circuit shown in Figure 5 is in steady state with V_{in} =0V for t<0. At t=0 V_{in} drops to 5V. All diodes have a forward voltage drop V_D =0.7V. The amplifier is supplied +/-12 V.

- a) For t<0 explain the expected steady state value for Vout.
- b) For t>0 explain the circuit operation
- c) For t>0 sketch V_{out} , V_A and V_B as a function of time including key amplitude and time values.

Question 6 (20 marks)

Figure 6.

Consider a CMOS technology with $C_{ox}=1 fF/\mu m^2$, $\mu_n C_{ox}=50 \mu A/V^2$, $\mu_p C_{ox}=20 \mu A/V^2$, $V_{tn}=-V_{tp}=1 V$, and $V_{DD}=5 V$. An inverter with a minimum gate length L=0.5 μ m has a symmetric transfer function for NMOS W/L = 1.5 and PMOS W/L =6.

- a) Provide a Boolean expression for Y based on the gate combination shown in Figure 6.
- b) Synthesize a transistor level CMOS logic circuit to implement this expression.
- c) Specify sizes (W/L) for all transistors in order to achieve current-driving capability equal to that of the basic inverter.
- d) If the output Y drives a standard inverter in this technology, evaluate the propagation delays considering only the inverter gate capacitance as a load.

Question 7 (20 marks)

Figure 7. $R=10k\Omega$, $V_{REF}=2.5V$. Switches hold the position shown if the control voltage is high, and connect to ground if the control voltage is low.

- a) Evaluate the current through each switch if the control signal S=(111111)
- b) Evaluate the current through each switch if the control signal S=(000000)
- c) Evaluate the output voltage for S=(001001).
- d) Describe another approach to implement the function of this circuit.