National Exams December 2013

07-Mec-B4, Integrated Manufacturing Systems

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Any five questions constitute a complete paper. Only the first five (5) questions as they appear in your answer book will be marked.
- 4. Each question is of equal value.
- 5. Some questions require an answer in essay format. Clarity and organization of the answer are important.

Question 1:

- a) What is the role of process planning in a discrete parts manufacturing industry?
- b) How does process planning affect part quality and manufacturing costs?
- c) What factors need to be considered by a company in evaluating and selecting the best process planning system?

Question 2:

Determine the control limits for the data shown in the table below

x_1	x_2	x_3	<i>X</i> 4
0.55	0.60	0.57	0.55
0.59	0.55	0.60	0.58
0.55	0.50	0.55	0.51
0.54	0.57	0.50	0.50
0.58	0.58	0.60	0.56
0.60	0.61	0.55	0.61

Question 3:

- a) What is a manufacturing cell? Why was it developed?
- b) Describe the principle of flexible manufacturing systems. Why do they require major capital investment?
- c) Why is a flexible manufacturing system capable of producing a wide range of lot sizes?
- d) What are the benefits of just-in-time production? Why is it called a pull system?
- e) Explain the function of a local area network.

Question 4:

- a) A manufacturer is ring rolling ball-bearing races (see Fig. 1). The inner surface has a surface roughness specification of 0.10 μ m \pm 0.05 μ m. Measurements taken from rolled rings indicate a mean roughness of 0.112 μ m with a standard deviation of 0.02 μ m. 30,000 rings per month are manufactured and the cost of discarding a defective ring is \$5.00. It is known that by changing lubricants to a special emulsion, the mean roughness could be made essentially equal to the design specification. What additional cost per month can be justified for the lubricant?
- b) For the data of Quantitative Problem 4(a), assume that the lubricant change can cause the manufacturing process to achieve a roughness of 0.09 μ m. What additional cost per month for the lubricant can be justified? What if the lubricant did not add any new cost?

FIGURE 1 (a) Schematic illustration of a ring-rolling operation. Thickness reduction results in an increase in the part diameter. (b) Examples of cross-sections that can be formed by ring rolling.

Question 5:

The following tasks must be performed on an assembly line in the sequence and times specified below.

Task	Task Time (seconds)	Task which must precede
A	50	-
В	40	-
C	20	A
D	45	A, C
E	20	A, C
F	25	A, C, D
G	10	A, C, E
Н	35	A, B, C, D, E, F

- a) Draw the schematic diagram.
- b) What is the theoretical minimum number of stations required to meet a forecasted demand of 400 units per eight-hour day?
- c) Select a balancing rule and balance the line in the minimum number of stations to produce 400 units per day.

Question 6:

The Green Manufacturing Company has leased facilities to manufacture a new product. The following data have been formulated from cost and market studies:

Estimated annual sales	24,000 units	
Estimated costs:		
Materials	\$96,000.	
Direct labor	14,400.	
Overhead	24,000.	
Administrative expenses	28,000.	

Selling expenses are expected to be 15% of sales. The required profit is \$1.02 per unit.

- a) What should the selling price be per unit?
- b) What is the breakeven point in dollars and units if overhead and administrative expenses are fixed but other costs are variable?

Question 7:

The historical demand for a product is: January, 80; February, 100; March, 60; April, 80; and May, 90.

- a. Using a simple four-month moving average, what is the forecast for June? If June experienced a demand of 100, what would your forecast be for July?
- b. Using single exponential smoothing with $\alpha = 0.20$, if the forecast for January had been 70, compute what the exponentially smoothed forecast would have been for the remaining months through June.
- c. Using least squares regression analysis, compute a forecast for June, July, and August.
- d. Using a weighted moving average with weights of 0.30, 0.25, 0.20, 0.15, and 0.10, what is June's forecast?