National Exams December 2013

04-Agric-A3, Heat Engineering

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Four (4) questions constitute a complete exam paper.

 The first four questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. All questions require calculation.

Problem 1(25 points)

- a) Figure below provides the results of a performance test for a single-glazed flat-plate collector. The transmissivity, τ , of the glass is 0.90, and the absorptivity, α , of the surface is 0.92. For the collector, find;
- a) The collector heat removal factor, F_R
- b) The overall conductance, U_L in Btu/ft².°F
- c) The rate at which the collector can deliver useful energy when the irradiation incident on the collector per unit area is 200 BTU/ft².h, the ambient temperature is 30°F, and the inlet water temperature is 60 °F.
- d) The collector temperature when the flow rate is zero(collector efficient $\eta=0$).

Problem 2(25 points)

The front of a slab (k=0.2 W/m.K) is kept at 415°C and the back is losing heat by conduction ($q_{cond}=3$ KW). If the area of the slab is 10 m² and it is 2.5 cm thick, compute the temperature at the back of the slab.

Problem 3(25 points)

A physics experiment uses liquid nitrogen as a coolant. Saturated liquid nitrogen at 80K flows through 6.35 mm O.D stainless steel line(emissivity ϵ_1 =0.2) inside a vacuum chamber. The chamber walls are at T_c =230K and are at some distance from the line.

Determine the heat gain of the line per unit length.

If a second stainless steel tube, 12.7 mm in diameter, is placed around the line to act as radiation shield

Determine the revised heat gain per unit length.

Hint: Assume that the chamber area is large compared to the shielded line.

Problem 4 (25 points)

A thin-walled metal tank containing fluid at 40°C cools in air at $14^{\circ}\text{C}(\beta=0.00348~\text{K}^{-1})$; the average natural convection heat transfer coefficient h is very large inside the tank. If the sides are 0.4 m high, compute h, the average heat flux q, and the thermal boundary layer thickness δ at the top. (Air properties at 27°C , $\alpha=2.203\times10^{-5}~\text{m}^2/\text{s}$, $\nu=1.556\times10^{-5}~\text{m}^2/\text{s}$, Pr=0.711)