04-CHEM-A2, MECHANICAL and THERMAL OPERATIONS

December 2016

3 hours duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
- 3. Candidates may use any non-communicating scientific calculator.
- 4. All problems are worth 25 points. At least **two problems** from **each** of sections **A** and **B** must be attempted.
- 5. Only the first two questions as they appear in the answer book from each section will be marked.
- 6. State all assumptions clearly.

Section A: Mechanical Operations

A1. Crude oil is to be transferred from one tank to another by way of a pump and standard 8-inch Schedule 40 steel pipe (internal diameter = 20.27 cm) at a rate of 4000 liters per minute. The suction line to the pump is 15 meters long, and the discharge is a further 180 meters. The discharge tank is 10 meters higher than the feed tank. The entrance to the feed tank and to the discharge tank are both square-edged, and there is a fully open globe valve in the line. There are two bends between the globe valve and discharge tank. If the crude oil has a specific gravity of 0.88 and dynamic viscosity of 8.5 x 10⁻² N.s/m² and the roughness of the steel pipe is 0.046 mm, determine the power requirement assuming a pump efficiency of 70%. Allow for entrance and exit head losses of 1.5 velocity heads. The valve used to regulate the flow has an equivalent length-to-diameter ratio of 340, and the two bends have an equivalent length-to-diameter ratio of 30.

Fanning friction factor (f) vs. Reynolds number (Re) for pipes Transactions of the American Society of Mechanical Engineers, vol. 66, p.672 (1944)

- A2. Oil (viscosity = $3 \times 10^{-3} \text{ Ns/m}^2$ and density = 900 kg/m^3) is passed vertically upwards through a bed of catalyst consisting of approximately spherical particles (diameter = 0.1 mm and density = 2600 kg/m^3). The voidage of catalyst bed is 0.48.
 - (a) [15 points] At approximately what mass flow rate per unit area of will fluidization occur?
 - (b) [10 points] At approximately what mass flow rate per unit area of will transport of particles occur?

- A3. A slurry containing 40% by mass solid is to be filtered on a rotary drum filter (diameter = 2 meters and length = 2 meters), which normally operates with 40% of its surface immersed in the slurry and under a pressure of 17 kN/m². A laboratory test on a sample of the slurry using a leaf filter (area = 200 cm²) and covered with a similar cloth to that on the drum produced 300 cm³ of filtrate in the first 60 seconds and 140 cm³ in the next 60 seconds, when the leaf was under an absolute pressure of 17 kN/m². The bulk density of the dry cake was 1500 kg/m³ and the density of the filtrate was 1000 kg/m³. The minimum thickness of cake, which could be readily removed from the cloth, was 5 mm.
 - (a) [20 points] At what speed should the drum rotate for maximum throughput?
 - **(b) [5 points]** What is the maximum throughput in terms of the mass of the slurry fed to the unit per unit time?

Section B: Thermal Operations

- **B1.** A 62.5% by weight aqueous solution of potassium nitrate (KNO₃) originally at 100 °C is gradually cooled to 10 °C in a crystallizer.
 - (a) [20 points] What is the yield of KNO₃ solids as a function of temperature?
 - (b) [5 points] How many kilograms of KNO₃ solids are produced 10 °C if the original solution weighed 22,680 kg?

Solubility of KNO₃ in water versus temperature Perry's Chemical Engineers' Handbook, 8th Edition (2007)

- **B2.** A countercurrent rotary dryer at 295 K is fed granular material containing 40% moisture and the material is withdrawn at 305 K containing 5% moisture. The air supplied, which contains 0.006 kg water vapor per kg of dry air, enters the dryer at 385 K and leaves at 310 K. The dryer handles 0.125 kg/sec wet stock of granular material. Assuming that radiation losses amount to 20 kJ/kg of dry air used, determine the following:
 - (a) [18 points] Mass flow of dry air supplied to the dryer
 - (b) [7 points] Humidity of air leaving the dryer.

DATA:

Specific heat capacity of dried granular material = 0.88 kJ/kg K

Specific heat capacity of dry air = 1.00 kJ/kg KSpecific heat capacity of water vapor = 2.01 kJ/kg KLatent heat of water vapor at 295 K = 2449 kJ/kg

B3. A shell-and-tube heat exchanger with one shell-side pass and one tube-side pass has the following geometry:

Shell diameter = 63.5 cm Number of tubes = 532 Length of a tube = 4.8 m Outer diameter of tube = 1.9 cm Inner diameter of tube = 1.6 cm Spacing between tubes (triangular arrangement) = 2.4 cm Baffle spacing = 24.1 cm

The tube material is stainless steel with a thermal conductivity of 17 W/m K. The fouling heat-transfer coefficient is 5670 W/m² K. The change in viscosity with temperature can be assumed negligible. Calculate the overall heat-transfer coefficient for this heat exchanger under the following service conditions:

Tube side liquid undergoing sensible-heat transfer

Flow rate = 226,795 kg/hr Specific heat = 2.1 kJ/kg K Viscosity = $5 \times 10^{-4} \text{ Pa.s}$ Specific gravity = 0.8

Thermal conductivity = 0.13 W/m K

Tube side liquid undergoing sensible-heat transfer

Flow rate = 90,718 kg/hr Specific heat = 4.19 kJ/kg KViscosity = $8.3 \times 10^{-4} \text{ Pa.s}$ Specific gravity = 1.0

Thermal conductivity = 0.62 W/m K

The Periodic Table of the Elements

1																		18
Hydrogen 1 H			Alk	ali metals aline earth		Element name → Mercury Atomic #						:#						Helium 2 He
1.01	2		Ott	ner metals		l l							13	14	15	16	17	4.00
Lithium 3	Beryllium 4	Metalloids (semi-metal) Nonmetals Halogens					Syl	1001	→ Hg 200.59 ← A					Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
Li 6.94	Be 9.01		Noble gases								— Avg. iviass		B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
Sodium 11	Magnesium 12]		Aluminum 13	Silicon 14	Phosphorus 15	Suffur 16	Chlorine 17	Argon 18
Na 22.99	Mg 24.31									•			AI 26.98	Si 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
			3	4	5	6	7	8	9 Cobalt	10 Nickel	11 Copper	12 Zinc	Gallium	Germanium	Arsenic	Solenium	Bromine	Krypton
Potassium 19	Calcium 20		Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	26	27	28 Ni	29	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
K 39.10	Ca 40.08		Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	M n 54.94	Fe 55.85	Co 58.93	58.69	Cu 63,55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rubidium	Strontium		Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Patladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	todine 53	Xenon 54
37 Rb 85.47	38 Sr 87.62		Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.76	Te 127.60	l 126.90	Xe 131.29
Cesium 55	Barium 56	57-70	Lutetium 71	Hafnlum 72 Hf	Tantalum 73 Ta	Tungsten 74 W	Rhenium 75 Re	Osmium 76 Os	Iridium 77 Ir	Platinum 78 Pt	^{Gold} 79 Au	Mercury 80 Hg	Thallium 81 TI	82 Pb	Bismuth 83 Bi	Polonium 84 Po	Astatine 85 At	Radon 86 Rn
Cs 32.91	Ba 137.33	*	Lu 174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	(209)	(210)	(222)
Francium 87	Radium 88		Lawrenclum 103	Rutherfordium 104	Dubnium 105	Seaborgium 106	Bohrium 107	Hassium 108	Meitnerium 109	Darmstadtium 110	Roentgenium 111	Copernicium 112	Ununtrium 113	Ununquadium 114	Ununpentium 115	Ununhexium 116	Ununseptium 117	Ununoctiu 118
Fr (223)	Ra (226)	89-102 **	Lr (262)	Rf (267)	Db (268)	Sg (271)	Bh (272)	Hs (270)	Mt (276)	Ds (281)	Rg (280)	Cn (285)	Uut (284)	Uuq (289)	(288)	Uuh (293)	Uus (294?)	(294)
			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thullum	Ytterbium]	
	*lanth	nidoc	57	58	59	60	61	62	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
*lanthanides		aniues	La 138.91	Ce 140.12	Pr 140.91	Nd 144.24	Pm (145)	Sm 150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
			Actinium	Thorium	Protactinium Q1	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102		

*lanthanides	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.97	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	
**actinides	Actinium 89 Ac (227)	Thorium 90 Th 232.04	Protactinium 91 Pa 231.04	Uranium 92 U 238.03	Neptunium 93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247)	Berkelium 97 Bk (247)	Californium 98 Cf (251)	Einsteinium 99 Es (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 No (259)	

