04-CHEM-A2, MECHANICAL and THERMAL OPERATIONS December 2016 #### 3 hours duration ### **NOTES** - 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made. - 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam. - 3. Candidates may use any non-communicating scientific calculator. - 4. All problems are worth 25 points. At least **two problems** from **each** of sections **A** and **B** must be attempted. - 5. Only the first two questions as they appear in the answer book from each section will be marked. - 6. State all assumptions clearly. #### **Section A: Mechanical Operations** A1. Crude oil is to be transferred from one tank to another by way of a pump and standard 8-inch Schedule 40 steel pipe (internal diameter = 20.27 cm) at a rate of 4000 liters per minute. The suction line to the pump is 15 meters long, and the discharge is a further 180 meters. The discharge tank is 10 meters higher than the feed tank. The entrance to the feed tank and to the discharge tank are both square-edged, and there is a fully open globe valve in the line. There are two bends between the globe valve and discharge tank. If the crude oil has a specific gravity of 0.88 and dynamic viscosity of 8.5 x 10⁻² N.s/m² and the roughness of the steel pipe is 0.046 mm, determine the power requirement assuming a pump efficiency of 70%. Allow for entrance and exit head losses of 1.5 velocity heads. The valve used to regulate the flow has an equivalent length-to-diameter ratio of 340, and the two bends have an equivalent length-to-diameter ratio of 30. Fanning friction factor (f) vs. Reynolds number (Re) for pipes Transactions of the American Society of Mechanical Engineers, vol. 66, p.672 (1944) - A2. Oil (viscosity = $3 \times 10^{-3} \text{ Ns/m}^2$ and density = 900 kg/m^3) is passed vertically upwards through a bed of catalyst consisting of approximately spherical particles (diameter = 0.1 mm and density = 2600 kg/m^3). The voidage of catalyst bed is 0.48. - (a) [15 points] At approximately what mass flow rate per unit area of will fluidization occur? - (b) [10 points] At approximately what mass flow rate per unit area of will transport of particles occur? - A3. A slurry containing 40% by mass solid is to be filtered on a rotary drum filter (diameter = 2 meters and length = 2 meters), which normally operates with 40% of its surface immersed in the slurry and under a pressure of 17 kN/m². A laboratory test on a sample of the slurry using a leaf filter (area = 200 cm²) and covered with a similar cloth to that on the drum produced 300 cm³ of filtrate in the first 60 seconds and 140 cm³ in the next 60 seconds, when the leaf was under an absolute pressure of 17 kN/m². The bulk density of the dry cake was 1500 kg/m³ and the density of the filtrate was 1000 kg/m³. The minimum thickness of cake, which could be readily removed from the cloth, was 5 mm. - (a) [20 points] At what speed should the drum rotate for maximum throughput? - **(b) [5 points]** What is the maximum throughput in terms of the mass of the slurry fed to the unit per unit time? ## **Section B: Thermal Operations** - **B1.** A 62.5% by weight aqueous solution of potassium nitrate (KNO₃) originally at 100 °C is gradually cooled to 10 °C in a crystallizer. - (a) [20 points] What is the yield of KNO₃ solids as a function of temperature? - (b) [5 points] How many kilograms of KNO₃ solids are produced 10 °C if the original solution weighed 22,680 kg? Solubility of KNO₃ in water versus temperature Perry's Chemical Engineers' Handbook, 8th Edition (2007) - **B2.** A countercurrent rotary dryer at 295 K is fed granular material containing 40% moisture and the material is withdrawn at 305 K containing 5% moisture. The air supplied, which contains 0.006 kg water vapor per kg of dry air, enters the dryer at 385 K and leaves at 310 K. The dryer handles 0.125 kg/sec wet stock of granular material. Assuming that radiation losses amount to 20 kJ/kg of dry air used, determine the following: - (a) [18 points] Mass flow of dry air supplied to the dryer - (b) [7 points] Humidity of air leaving the dryer. DATA: Specific heat capacity of dried granular material = 0.88 kJ/kg K Specific heat capacity of dry air = 1.00 kJ/kg KSpecific heat capacity of water vapor = 2.01 kJ/kg KLatent heat of water vapor at 295 K = 2449 kJ/kg **B3.** A shell-and-tube heat exchanger with one shell-side pass and one tube-side pass has the following geometry: Shell diameter = 63.5 cm Number of tubes = 532 Length of a tube = 4.8 m Outer diameter of tube = 1.9 cm Inner diameter of tube = 1.6 cm Spacing between tubes (triangular arrangement) = 2.4 cm Baffle spacing = 24.1 cm The tube material is stainless steel with a thermal conductivity of 17 W/m K. The fouling heat-transfer coefficient is 5670 W/m² K. The change in viscosity with temperature can be assumed negligible. Calculate the overall heat-transfer coefficient for this heat exchanger under the following service conditions: Tube side liquid undergoing sensible-heat transfer Flow rate = 226,795 kg/hr Specific heat = 2.1 kJ/kg K Viscosity = $5 \times 10^{-4} \text{ Pa.s}$ Specific gravity = 0.8 Thermal conductivity = 0.13 W/m K Tube side liquid undergoing sensible-heat transfer Flow rate = 90,718 kg/hr Specific heat = 4.19 kJ/kg KViscosity = $8.3 \times 10^{-4} \text{ Pa.s}$ Specific gravity = 1.0 Thermal conductivity = 0.62 W/m K # The Periodic Table of the Elements | 1 | | | | | | | | | | | | | | | | | | 18 | |---------------------------------|---------------------|--|---------------------|---------------------------|---------------------------|---------------------------------|---------------------|---------------------|---------------------------|----------------------|------------------------------------|---------------------|----------------------|---------------------|---------------------|----------------------|----------------------|-------------------| | Hydrogen
1
H | | | Alk | ali metals
aline earth | | Element name → Mercury Atomic # | | | | | | :# | | | | | | Helium
2
He | | 1.01 | 2 | | Ott | ner metals | | l l | | | | | | | 13 | 14 | 15 | 16 | 17 | 4.00 | | Lithium
3 | Beryllium
4 | Metalloids (semi-metal) Nonmetals Halogens | | | | | Syl | 1001 | → Hg
200.59 ← A | | | | | Carbon
6 | Nitrogen
7 | Oxygen
8 | Fluorine
9 | Neon
10 | | Li
6.94 | Be
9.01 | | Noble gases | | | | | | | | — Avg. iviass | | B
10.81 | C 12.01 | N
14.01 | O
16.00 | F
19.00 | Ne
20.18 | | Sodium
11 | Magnesium
12 | | | | | | | | | |] | | Aluminum
13 | Silicon
14 | Phosphorus
15 | Suffur
16 | Chlorine
17 | Argon
18 | | Na
22.99 | Mg
24.31 | | | | | | | | | • | | | AI
26.98 | Si 28.09 | P
30.97 | S
32.07 | CI
35.45 | Ar
39.95 | | | | | 3 | 4 | 5 | 6 | 7 | 8 | 9
Cobalt | 10
Nickel | 11
Copper | 12
Zinc | Gallium | Germanium | Arsenic | Solenium | Bromine | Krypton | | Potassium
19 | Calcium
20 | | Scandium
21 | Titanium
22 | Vanadium
23 | Chromium
24 | Manganese
25 | 26 | 27 | 28
Ni | 29 | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | K
39.10 | Ca
40.08 | | Sc
44.96 | Ti
47.88 | V
50.94 | Cr 52.00 | M n
54.94 | Fe 55.85 | Co
58.93 | 58.69 | Cu
63,55 | 65.39 | 69.72 | 72.61 | 74.92 | 78.96 | 79.90 | 83.80 | | Rubidium | Strontium | | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium
43 | Ruthenium
44 | Rhodium
45 | Patladium
46 | Silver
47 | Cadmium
48 | Indium
49 | Tin
50 | Antimony
51 | Tellurium
52 | todine
53 | Xenon
54 | | 37
Rb
85.47 | 38
Sr
87.62 | | Y
88.91 | Zr
91.22 | Nb
92.91 | Mo
95.94 | Tc
(98) | Ru
101.07 | Rh
102.91 | Pd 106.42 | Ag 107.87 | Cd 112.41 | In
114.82 | Sn
118.71 | Sb 121.76 | Te
127.60 | l
126.90 | Xe
131.29 | | Cesium
55 | Barium
56 | 57-70 | Lutetium
71 | Hafnlum
72
Hf | Tantalum
73
Ta | Tungsten
74
W | Rhenium
75
Re | Osmium
76
Os | Iridium
77
Ir | Platinum
78
Pt | ^{Gold}
79
Au | Mercury
80
Hg | Thallium
81
TI | 82
Pb | Bismuth
83
Bi | Polonium
84
Po | Astatine
85
At | Radon
86
Rn | | Cs
32.91 | Ba
137.33 | * | Lu
174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.20 | 208.98 | (209) | (210) | (222) | | Francium
87 | Radium
88 | | Lawrenclum
103 | Rutherfordium
104 | Dubnium
105 | Seaborgium
106 | Bohrium
107 | Hassium
108 | Meitnerium
109 | Darmstadtium
110 | Roentgenium
111 | Copernicium
112 | Ununtrium
113 | Ununquadium
114 | Ununpentium
115 | Ununhexium
116 | Ununseptium
117 | Ununoctiu
118 | | Fr
(223) | Ra (226) | 89-102
** | Lr
(262) | Rf (267) | Db (268) | Sg (271) | Bh (272) | Hs
(270) | Mt
(276) | Ds (281) | Rg (280) | Cn (285) | Uut
(284) | Uuq
(289) | (288) | Uuh
(293) | Uus
(294?) | (294) | | | | | Lanthanum | Cerium | Praseodymium | Neodymium | Promethium | Samarium | Europium | Gadolinium | Terbium | Dysprosium | Holmium | Erbium | Thullum | Ytterbium |] | | | | *lanth | nidoc | 57 | 58 | 59 | 60 | 61 | 62 | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | | | | *lanthanides | | aniues | La
138.91 | Ce
140.12 | Pr
140.91 | Nd
144.24 | Pm (145) | Sm
150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | | | | | | Actinium | Thorium | Protactinium
Q1 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | | | | *lanthanides | 57
La
138.91 | 58
Ce
140.12 | 59
Pr
140.91 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.36 | 63
Eu
151.97 | 64
Gd
157.25 | 65
Tb
158.93 | 66
Dy
162.50 | 67
Ho
164.93 | 68
Er
167.26 | 69
Tm
168.93 | 70
Yb
173.04 | | |--------------|-------------------------------|--------------------------------------|------------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|---------------------------------------|----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--------------------------------|--| | **actinides | Actinium
89
Ac
(227) | Thorium
90
Th
232.04 | Protactinium
91
Pa
231.04 | Uranium
92
U
238.03 | Neptunium
93
Np
(237) | Plutonium
94
Pu
(244) | Americium
95
Am
(243) | Curium
96
Cm
(247) | Berkelium
97
Bk
(247) | Californium
98
Cf
(251) | Einsteinium
99
Es
(252) | Fermium
100
Fm
(257) | Mendelevium
101
Md
(258) | Nobelium
102
No
(259) | |