National Exams

98-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is a OPEN BOOK exam.
 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. The diode can be replaced by piece-wise linear model with V_D =0.7V, R_S =10 Ω for forward bias.

For the circuit shown in Figure 1:

- a) Sketch V_i and V_o as a function of time, indicating peak voltages.
- b) What is the peak reverse voltage across D_1 ?
- c) What is the peak power dissipated in D_1 ?

Figure 2. Assume the diodes have a voltage drop V_D =0.7V when conducting. $R1=R2=1k\Omega$.

For the circuit shown in Figure 2:

d)) For V_i =10V sin(2 π 60t) sketch the output V_o (t). Label key voltages and times, and indicate changes in operating region for each diode.

Question 2 (20 marks)

Figure 3. k_n '= $\mu_n C_{ox}$ =1 mA/V², k_p '=40 μ A/V², W/L=10 μ m, V_{tn} =- V_{tp} =1V, $|V_A|$ =100V For the circuit shown in Figure 3:

- a) Draw a small signal ac equivalent circuit.
- b) Find an expression for voltage gain V_o/V_i .
- c) Choose a bias current I_{REF} to provide a gain of 200 V/V.
- d) A load resistor of 100 $k\Omega$ is connected from V_o to ground. What is the voltage gain?

Question 3 (20 marks)

Figure 4.

For the circuit shown in Figure 4:

- a) Derive the transfer function $\frac{Vo(j\omega)}{Vi(j\omega)}$ for the circuit shown, assuming the op-amp is ideal.
- b) Find the DC gain, 3dB frequency, and the unity gain bandwidth for this circuit.
- c) If $Vi(t)=1\sin(200t) V$, find Vo(t).
- d) If the op-amp has a finite gain A=10⁴ V/V, find the transfer function $\frac{Vo(j\omega)}{Vi(j\omega)}$.

Question 4(20 marks)

Figure 5. $V_{be}=0.7V$ (active), $V_{ce}=0.2V$ (saturation), $\beta=100$.

For the circuit shown in Figure 5:

- a) What value of V_i will make Q₁ active? What is the expression for Vo for this input?
- b) What value of V_i will make Q₁ saturate?
- c) For Q_1 active with $I_C=1$ mA, draw the small signal AC equivalent circuit. Evaluate the voltage gain.

Figure 6. V_{be} =0.7V (active), V_{ce} =0.2V (saturation), β =100.

- d) For $V_A=V_B=0V$, what is the state of each transistor and the value of V_0 ?
- e) For V_A or $V_B=3V$, what is the state of each transistor and the value of V_O ?

Question 5 (20 marks)

Figure 7. Assume the op-amps are ideal. R=10k Ω , R_f=100 k Ω

For the circuit shown in Figure 7:

- a) Find the loop gain expression.
- b) What condition on the loop gain will result in oscillation? What is the expression for oscillation frequency for this circuit?
- c) Choose a value R_G that will initiate oscillation.
- d) Choose a value C to provide an oscillation frequency of 1kHz.

Question 6 (20 marks)

Figure 8. $k_n'=50 \mu A/V^2$, $k_p'=20 \mu A/V^2$, $V_{tn}=-V_{tp}=1V$, $C_{ox}=1 fF/\mu m^2$

- a) If the minimum gate length for this technology is 1 μ m, size Q_N and Q_P to obtain a symmetric transfer characteristic.
- b) Estimate the propagation delay if the inverter drives a second identical inverter. Consider only the gate oxide contribution to capacitance.

Figure 9.

For the circuit shown in Figure 9:

- c) For a low to high transition at node 1 at t=0s, sketch the waveforms at all 5 nodes for one full period.
- d) If the propagation delay for a single inverter is 0.5 ns, what is the frequency of the signal supplied by this circuit?

Question 7 (20 marks)

Figure 10.

- a) Initial value of $V_0=0V$. At t=0s the switch is connected to V_a (negative). What is $V_o(t)$?
- b) At $t=T_1$ S is moved to connect to V_{ref} (positive). How long (T_2) will it take for V_0 to return to 0V?
- c) A counter measures T_1 and T_2 . If the counter value is n_{ref} at $t=T_1$, what is the value at $t=T_2$?
- d) If $V_{ref}=10V$ and $n_{ref}=2^8$, what is the voltage resolution in measuring V_a ?

Figure 11.

e) For the circuit in Figure 11, find the expression for V_o as a function of switch positions S_a to S_d . Which switch represents the most significant bit?

Marking Scheme

```
    20 marks total (4 parts, 5 marks each)
    20 marks total (4 parts, 5 marks each)
    30 marks total (4 parts, 5 marks each)
```

3. 20 marks total (4 parts, 5 marks each)

4. 20 marks total (a),b),c) 5 marks each, d) 2 marks, e) 3 marks)

5. 20 marks total (4 parts, 5 marks each)

6. 20 marks total (4 parts, 5 marks each)

7. 20 marks total (a) 4 marks, b) 4 marks, c) 3 marks, d) 4 marks, e) 5 marks)