National Exams December 2013

04-BS-13, Biology

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK EXAM. One aid sheet allowed written on both sides. One of two calculators is permitted, any Casio or Sharp approved models.
- 3. FIVE (5) questions constitute a complete exam paper.

 The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. Some questions require an answer in essay format. Clarity and organization of the answer are important.

Part I: Solve any 3 questions out of the following 6 questions (20 marks for each)

Note: For questions 1 to 4, in order to calculate molecular weights of biomasses, products and substrates, elemental atomic masses will be needed. These are: for C = 12, for H = 1, for N = 14, and for O = 16.

1. Ethanol production by yeast:

Saccharomyces cerevisiae produces ethanol (C_2H_6O) from glucose ($C_6H_{12}O_6$) under anaerobic conditions without external electron acceptors. The biomass yield from glucose is 0.11 g/g. The nitrogen source is NH₃. Cell composition is represented by the formula $CH_{1.8}O_{0.5}N_{0.2}$. Assume 5% ash in the biomass. (Glucose degree of reduction (γ) = 4; ethanol degree of reduction (γ) = 6). This process is represented by:

$$C_6H_{12}O_6 + bNH_3 \rightarrow c CH_{1.8}O_{0.5}N_{0.2} + dCO_2 + eH_2O + fC_2H_6O$$

- (a) What is the yield of ethanol from glucose? (15 marks)
- (b) How do the yield calculated in (a) compare with the thermodynamic maximum? (5 marks)

2. Effect of cell growth on oxygen demand:

The biochemical reaction equation for conversion of ethanol (C_2H_6O) to acetic acid ($C_2H_4O_2$) is:

$$C_2H_6O + O_2 \rightarrow C_2H_4O_2 + H_2O$$

Acetic acid is produced from ethanol during growth of Acetobacter aceti, which has the composition of $CH_{1.8}O_{0.5}N_{0.2}$. The biomass yield from the substrate is 0.14 g/g; product yield from the substrate is 0.92 g/g. Ammonia (NH₃) is used as nitrogen source. How does growth in this culture affect oxygen demand for acetic acid production? (Acetic acid degree of reduction (γ) = 4; ethanol degree of reduction (γ) = 6, γ for biomass = 4.2). (20 marks)

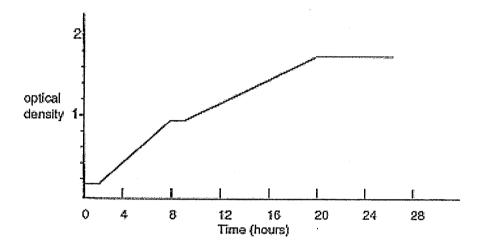
3. Production of Baker's yeast:

Baker's yeast is produced in a 50 000 litre (L) fermenter under aerobic conditions. The carbon substrate is sucrose ($C_{12}H_{22}O_{11}$); ammonia (NH₃) is provided as nitrogen source. The average biomass composition is $CH_{1.83}O_{0.55}N_{0.17}$ with 5% ash. The process is represented by: $C_{12}H_{22}O_{11} + aNH_3 + bO_2 \rightarrow cCH_{1.83}O_{0.55}N_{0.17} + dCO_2 + eH_2O$ Under efficient growth conditions, biomass is the only major product; and the biomass yield from sucrose is 0.5 g/g. If the specific growth rate is 0.45 h⁻¹, estimate the rate of heat removal required to maintain constant temperature in the fermenter when the yeast concentration is 10 g/L. (20 marks)

- 4. The growth of yeast (S. cerevisiae, X) on glucose (substrate, S) is described by:
 - $C_6H_{12}O_6 + 3O_2 + 0.48NH_3 \rightarrow 0.48C_6H_{10}NO_3 + 4.32H_2O + 3.12CO_2$

In a batch reactor of volume 100 000 L, the final desired yeast concentration is 50 g biomass/L. Molecular weight of yeast = 144 g/mol, molecular weight of glucose = 180 g/mol, and molecular weight of ammonia = 17 g/mol.

- (a) Determine the yield coefficients Y_{XS} (g/g) and Y_{XO2} (g/g). (10 marks)
- (b) Determine the total amount of oxygen required. (5 marks)
- (c) If the rate of growth at exponential phase is $r_x = 0.7$ g biomass/(L.h), determine the rate of oxygen consumption g/(L.h). (5 marks)
- 5. (a) In order to design a bioreactor for a process what type of data (10 important ones) you will need. (10 marks)
 - (b) Why you will prefer the following bioreactors, give two reasons for each: Batch, Fed-batch, and Chemostat. (10 marks)
- 6. How does the gross cell structure of a plant or animal product affect its further processing into useful products? Discuss with a few examples after providing their cell structures. (20 marks)


Part II. Answer any 2 questions out of the following 4 questions (20 marks for each question)

7. Hairy roots are produced by genetic transformation of plants using *Agrobacterium rhizogenes*. The following biomass and sugar concentration were obtained during batch culture of *Atropa belladonna* hairy roots in a bubble-column fermenter.

Time, d	0	5	10	15	20	25	30	35	40	45	50	55
Biomass concentration, g/L dry mass	0.64	1.95	4.21	5.54	6.98	9.5	10.3	12	12.7	13.1	13.5	13.7
Sugar concentration, g/L	30	27.4	23.6	21	18.4	14.8	13.3	9.7	8	6.8	5.7	5.1

- (a) Plot specific growth rate (μ) as a function of culture time. When is the growth rate constant? (10 marks)
- (b) Plot the specific rate of sugar uptake as a function of time. (8 marks)
- (c) What is the observed biomass yield (Y_{XS}) from substrate? (2 marks)

- 8. Below (Fig. 1, page 5) is a growth curve for *Listeria* in broth culture. Draw the growth curve on the above graph when the:
 - (a) incubation temperature is increased to 37°C (Aw 0.99, pH 6.8), (7 marks)
 - (b) the water activity (Aw) is decreased to 0.42 in combination with a 37°C incubation, (7 marks)
 - (c) When the water activity is 0.99, incubation temperature of 15°C and pH 6.8 but the product stored under Modified Atmospheric Packaging (MAP; 20% carbon dioxide, 80% nitrogen). (6 marks)
- 9. Below is a growth curve for an *E. coli* culture growing on a glucose:lactose based medium. By referring to the curve answer the following questions

- (a) The transcription of the beta-galactosidase and lactose permease genes begins at? (6 marks)
- (b) During what period of time do the bacteria utilize lactose as their sole source of carbon and energy? (7 marks)
- (c) During what period of time do the bacteria utilize glucose as a carbonenergy source? (7 marks)
- 10. (a) Describe the differences in cell wall structure between Gram-negative and Gram-positive bacteria. (7 marks)
- (b) What are the similarities and differences between animal, plant and bacterial viruses? (7 marks)
- (c) What is the pure culture? Why do we place such importance on obtaining and maintaining pure culture? (6 marks)

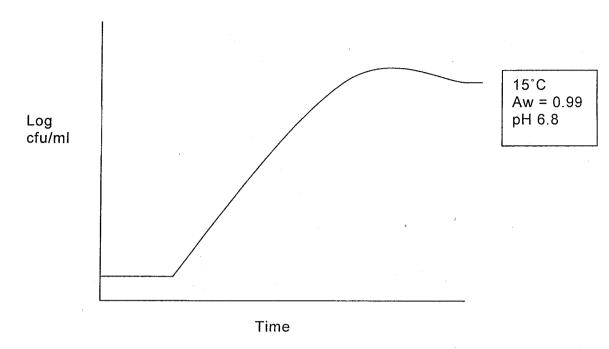
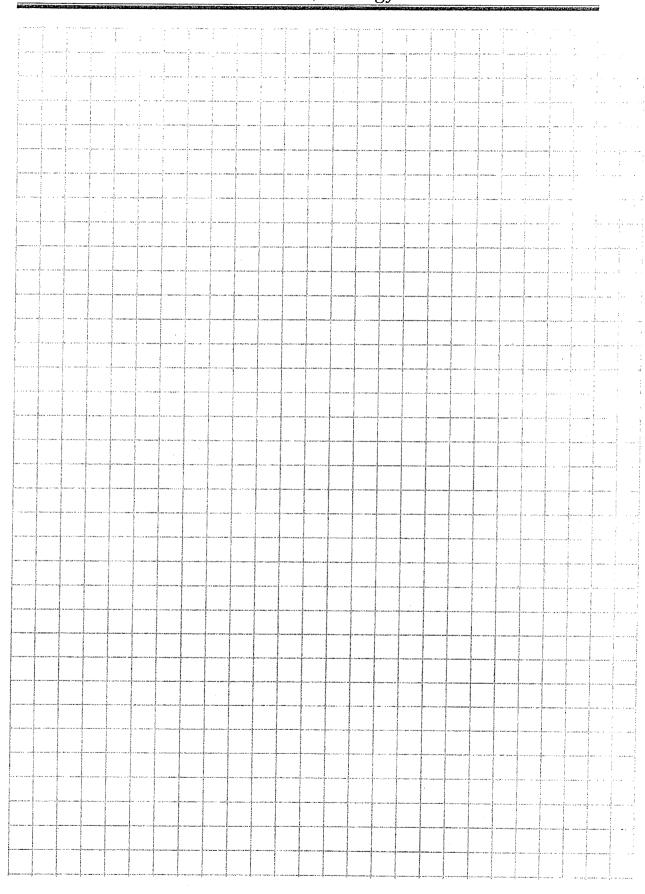




Figure 1 for problem 8

Page **7** of **7**