National Exams May 2016

98-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is a OPEN BOOK exam.

 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. Diodes D_1 , D_2 have a forward voltage drop V_D =0.7V. Diode D_3 has a maximum reverse voltage of 5.1V.

For the circuit shown in Figure 1 is in steady state:

- a) Sketch $V_{1,}\,V_{2}$ and V_{o} as a function of time, indicating peak voltages.
- b) Sketch $V_{c_{\mbox{\tiny c}}}$ as a function of time, indicating peak voltages.
- c) What is the peak current through R_1 ?
- d) What power rating would you choose for D₃?

Question 2 (20 marks)

Figure 2. k_n '= $\mu_n C_{ox}$ =1 mA/V², W/L=10, $|V_t|$ =1V, V_A =100V assume λ =0.

For the circuit shown in Figure 2:

- a) Find a value for R that will result in $I_{D,Q3}=0.5$ mA?
- b) Draw a small signal equivalent model for the circuit.
- c) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

For the circuit shown in Figure 3:

- a) Derive the transfer function $\frac{V_o(j\omega)}{V_i(j\omega)}$ for the circuit shown in Figure 3, assuming the op-amp is ideal.
- b) Sketch the frequency response, indicating 3dB frequencies for this circuit.
- c) If $V_i(t) = 10\sin(120\pi t)$ V, find $V_o(t)$.

Question 4(20 marks)

Figure 4. I=0.2mA, β =100, V_A=100V.

For the circuit shown in Figure 4:

- a) Find the input resistance Ri.
- b) Find the output resistance Ro.
- c) Find the amplifier transconductance G_m .
- d) Find the open-circuit voltage gain for the amplifier.

Question 5 (20 marks)

Figure 5. R=10k Ω , C=0.1 μ F

For the circuit shown in Figure 5:

- a) Find the loop gain expression.
- b) Find the condition for zero loop-phase.
- c) Choose component values R_1 and R_2 to sustain oscillation.

Question 6 (20 marks)

- a) Synthesize a CMOS logic circuit to implement $Y = \overline{AB(C+D)}$.
- b) Size transistors in your circuit. The minimum length is 1 μ m and the basic inverter uses n=2 and p=5.
- c) Synthesize the function in a) using pass transistor logic.

Question 7 (20 marks)

Figure 6. V_A <0, V_R is a positive reference. The capacitor is initially discharged. At t=0 Φ_1 goes high, Φ_2 goes low. For t> T_1 Φ_1 goes low, Φ_2 goes high. At t= T_2 the comparator output switches.

- a) Sketch V_x(t).
- b) Find the slope of $V_x(t)$.
- c) Find an expression for T_2/T_1 .
- d) What are the limitations of the application of this circuit?

Marking Scheme

1.	20 marks total	(4 parts, 5 marks each)
2.	20 marks total	(a. 10 marks, b. 5 marks, c. 5 marks)
3.	20 marks total	(a. 10 marks, b. 5 marks, c. 5 marks)
4.	20 marks total	(4 parts, 5 marks each)
5.	20 marks total	(a. 10 marks, b. 5 marks, c. 5 marks)
6.	20 marks total	(a. 5 marks, b. 5 marks, c. 10 marks)
7.	20 marks total	(4 parts, 5 marks each)

May 2016 – 98-Comp-A1, Electronics