National Exams May 2016

98-Comp-A1, Electronics

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
2. This is a OPEN BOOK exam.

Any non-communicating calculator is permitted.
3. FIVE (5) questions constitute a complete exam paper.

The first 5 questions as they appear in the answer book will be marked.
4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. Diodes D_{1}, D_{2} have a forward voltage drop $V_{D}=0.7 \mathrm{~V}$. Diode D_{3} has a maximum reverse voltage of 5.1 V .

For the circuit shown in Figure 1 is in steady state:
a) Sketch V_{1}, V_{2} and V_{0} as a function of time, indicating peak voltages.
b) Sketch V_{c}, as a function of time, indicating peak voltages.
c) What is the peak current through R_{1} ?
d) What power rating would you choose for D_{3} ?

Question 2 (20 marks)

Figure 2. $\mathrm{k}_{\mathrm{n}}{ }^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=1 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~W} / \mathrm{L}=10,\left|\mathrm{~V}_{\mathrm{t}}\right|=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$ assume $\lambda=0$.
For the circuit shown in Figure 2:
a) Find a value for R that will result in $\mathrm{I}_{\mathrm{D}, \mathrm{Q} 3}=0.5 \mathrm{~mA}$?
b) Draw a small signal equivalent model for the circuit.
c) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

Figure 3.

For the circuit shown in Figure 3:
a) Derive the transfer function $\frac{V_{o}(j \omega)}{V_{i}(j \omega)}$ for the circuit shown in Figure 3, assuming the op-amp is ideal.
b) Sketch the frequency response, indicating 3 dB frequencies for this circuit.
c) If $V_{i}(t)=10 \sin (120 \pi \mathrm{t}) \mathrm{V}$, find $V_{o}(t)$.

Question 4(20 marks)

Figure 4. $\mathrm{I}=0.2 \mathrm{~mA}, \beta=100, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$.
For the circuit shown in Figure 4:
a) Find the input resistance Ri.
b) Find the output resistance Ro.
c) Find the amplifier transconductance G_{m}.
d) Find the open-circuit voltage gain for the amplifier.

Question 5 (20 marks)

Figure 5. $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$
For the circuit shown in Figure 5:
a) Find the loop gain expression.
b) Find the condition for zero loop-phase.
c) Choose component values R_{1} and R_{2} to sustain oscillation.

Question 6 (20 marks)

a) Synthesize a CMOS logic circuit to implement $\mathrm{Y}=\overline{\mathrm{AB}(\mathrm{C}+\mathrm{D})}$.
b) Size transistors in your circuit. The minimum length is $1 \mu \mathrm{~m}$ and the basic inverter uses $\mathrm{n}=2$ and $\mathrm{p}=5$.
c) Synthesize the function in a) using pass transistor logic.

Question 7 (20 marks)

Figure 6. $\mathrm{V}_{\mathrm{A}}<0, \mathrm{~V}_{\mathrm{R}}$ is a positive reference. The capacitor is initially discharged. At $\mathrm{t}=0$ Φ_{1} goes high, Φ_{2} goes low. For $t>T_{1} \Phi_{1}$ goes low, Φ_{2} goes high. At $t=T_{2}$ the comparator output switches.
a) Sketch $V_{x}(t)$.
b) Find the slope of $V_{x}(t)$.
c) Find an expression for T_{2} / T_{1}.
d) What are the limitations of the application of this circuit?

Marking Scheme

1. 20 marks total (4 parts, 5 marks each)
2. 20 marks total
3. 20 marks total
4. 20 marks total
5. 20 marks total
6. 20 marks total
7. 20 marks total
(a. 10 marks, b. 5 marks, c. 5 marks)
(a. 10 marks, b. 5 marks, c. 5 marks)
(4 parts, 5 marks each)
(a. 10 marks, b. 5 marks, c. 5 marks) (a. 5 marks, b. 5 marks, c. 10 marks)
(4 parts, 5 marks each)

May 2016 - 98-Comp-A1, Electronics

