National Exams December 2018

16-Mex-A3, Digital Systems & Computers

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a Closed Book exam.
 Candidates may use one of two calculators, the Casio or Sharp approved models.
- 3. FIVE (5) questions constitute a complete exam.

 Clearly indicate your choice of any five of the six questions given otherwise the first five answers found will be considered your pick.
- All questions are worth 12 points.
 See below for a detailed breakdown of the marking.

Marking Scheme

- 1. (a) 2, (b) 2, (c) 2, (d) 3, (e) 3, total = 12
- 2. (a) 6, (b) 3, (c) 3, total = 12
- 3. (a) 6, (b) 6, total = 12
- 4. (a) 4, (b) 4, (c) 4, total = 12
- 5. (a) 4, (b) 4, (c) 4, total = 12
- 6. (a) 4, (b) 4, (c) 4, total = 12

The number beside each part above indicates the points that part is worth

- 1.- (a) Using only one NAND gate build a NOT gate.
 - (b) Using only NAND gates build a two-input OR gate.

Draw circuits for the function g given by

$$g = (\overline{(A+B) \cdot \overline{C}} + B\overline{C}D) \cdot E \cdot (A+B)$$

- (c) as written above using AND, OR & NOT gates (assume 2 & 3-input gates are available).
- (d) using NAND gates only (assume literal complements as well as 2 and 3-input gates are available).
- (e) using NOR gates only (assume literal complements as well as 2 and 3-input gates are available).

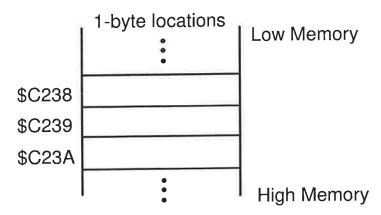
Note: Do not use Boolean algebra or K-map to simplify function g in parts (c)-(e) above.

- 2.- A 3-bit counter advances through the sequence 000, 010, 100, 101, 011, 001 back to 000 and repeats.
 - (a) Using the standard design process for synchronous counters, show how to implement this counter using JK flip-flops. Include:
 - state transition diagram,
 - state transition table including flip-flop inputs, and
 - a drawing of the final circuit implementing the counter.
 - (b) Check whether the counter is self-starting or not.
 - (c) Sketch the timing diagram for the counter showing its dynamic behavior for 8 clock pulses, include:
 - The clock waveform CLK, containing at least six clock pulses after t = 0, and
 - The output waveforms Q_A, Q_B & Q_C, where Q_A is the output of flip-flop A (MSB¹), Q_B is the output of flip-flop B and Q_C is the output of flip-flop C (LSB¹).

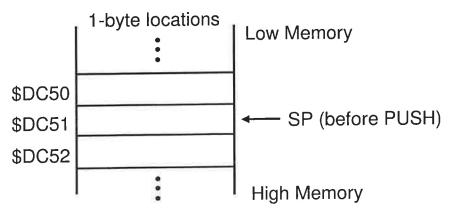
Assume the $\overline{\text{CLR}}$ input of all flip-flops is temporarily held LOW during the clock cycles preceding time t = 0, then it goes HIGH.

¹ MSB: most significant bit, LSB: least significant bit

a

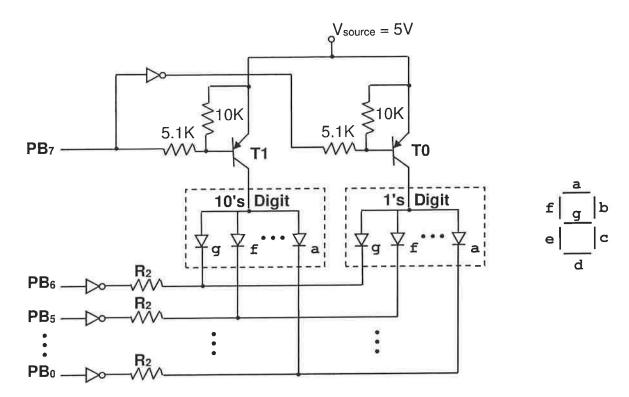

- The following is a truth table of a 3-input, 4-output combinational circuit. 3.-
 - (a) Using K-maps obtain the simplified expressions for A, B, C and D.
 - (b) Implement using a PAL or PLA architecture. Justify your choice.

	Inputs		Outputs			
X	Y	Z	A	В	C	D
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	0	1	0	1
1	1	0	0	1	11	0
1	1	1	11	1	0	1


4	(a)	Identify by marking with a X which of the following are the 4 essential components of a computer system.				
		Mouse	Busses (address, data, control)			
		Processor (CPU)	Keyboard			
		Printer	Display monitor			
		Hard drive	I/O ports			
		Memory				
	(b)	Identify the main differences between microcontroller.	a general purpose microprocessor and a			
	(c)	Identify which CPU register(s) is(are) typic	cally associated with each of the following			
	- the address of the next instruction to be executed: - the next available location at the top of the stack:					
- pointing to an array or list of data values in memory:						
		- containing the information an assembly p				

- 5.- For microprocessors, such as Motorola's, that use big-endian order for storing multiple-byte variables
 - (a) Fill the memory block below with the result of the instruction:

"Store the 16-bit number \$7A01 to address \$C239"



(b) Let SP = \$DC51. Fill the memory block below with the result of the instruction: "Push the 16-bit number \$7A01 onto the stack"

(c) What is the value of the stack pointer register SP after the PUSH?

- 6.- The figure below shows a circuit used to display two digits in two common-anode seven-segment LED displays. The LED arrangement for each seven-segment display is shown on the right side. Parallel Port B lines PB7-PB0 of a microcontroller are used to control the two-digit display. PB7 is used for digit selection, while PB6-PB0 are used to determine which segments are lit. Consider that inverters are open-collector TTL inverters and transistor saturation VCE value is approximately 0.3V.
 - (a) Provide the binary values needed in Port B lines to display the decimal number 40.
 - (b) From the programming point-of-view suggest the sequence of steps that will allow observing the number 40 lit on the display. Explain.
 - (c) Find the value for the resistors R₂ that will allow limiting the current through each LED to 10mA. When turned on, consider the nominal voltage across a LED is 2V.

Excitation Table

_	•	ln î	C	lτ	K	T	ط	1
Q	Q+	R	3	J	77		10	
0	0	X	0	0	X	0	0	04.0
0	1	0	1	1	X	1	1	
1	0	1	0	X	1	1	0	
1	1	0	- X	X	0	0	1	

Basic Boolean Identities

	Identity	Comments
1. 2. 3. 4. 5. 6. 7.	Identity $A + 0 = A$ $A + 1 = 1$ $A + A = A$ $A + \overline{A} = 1$ $A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot \overline{A} = 0$	Operations with 0 and 1 Operations with 0 and 1 Idompotent Complementarity Operations with 0 and 1 Operations with 0 and 1 Idompotent Complementarity
9.	$\overline{A} = A$	Involution
10.	A + B = B + A	Commutative
11.	$A \cdot B = B \cdot A$	Commutative
12.	A + (B + C) = (A + B) + C = A + B + C	Associative
13.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	Associative
14.	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$	Distributive
15.	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive
16.	$A + (A \cdot B) = A$	Absorption
17.	$A \cdot (A + B) = A$	Absorption
18.	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	Consensus
	$\overline{A+B+C+} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot$	De Morgan
19.	$\overline{A \cdot B \cdot C \cdot} = \overline{A} + \overline{B} + \overline{C} +$	De Morgan
20.		Simplification
21.	$(A+\overline{B})\cdot B=A\cdot B$	•
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification