# National Examination, December 2013

# 04-Env-A6 - Solid Waste Engineering and Management

### 3 hours duration

#### **NOTES:**

- 1. This examination consists of 16 question.
- 2. The total possible examination mark is 100.
- 3. This examination is a CLOSED BOOK EXAM.
- 4. Candidates are permitted ONE (1) letter sized aid sheet (8.5 "x 11") both sides.
- 5. One calculator (Casio or Sharp).
- 6. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.

## National Examination, December 2013

# 04-Env-A6 - Solid Waste Engineering and Management

# 1. Define: points 10 1.1 Pyrolysis 1.2 Btu 1.3 Pathogens 1.4 Vadose zone 1.5 Soil porosity 1.6 Henry's Law 1.7 Wet oxidation 1.8 Darcy's Law 1.9 Breakthrough time 1.10 Life-cycle analysis points 6 Name and briefly discuss 3 considerations that are critical in solid waste management. 3. Name and briefly discuss 4 considerations for the design of a solid waste points 8 collection system. points 6 Name and briefly discuss 3 different leachate treatment processes. Name and briefly discuss 4 common problems that you must consider when points 8 designing a landfill. points 5 Outline a strategy that you would propose to you client municipality that will reduce Green House Gas emissions due to solid waste generation. For a population of 50,000 estimate the annual area required points 5 (excluding buffer zone) for a normally compacted landfill having a refuse depth of 4 m excluding cover material. State any assumptions made.

- 8. As consulting engineer, you have been commissioned to develop a comprehensive solid waste management system for a community interested in achieving greater recovery and reuse of their solid wastes. Two of the possible alternatives are separation at home or separation at a materials recovery facility. What important factors must you consider in evaluating these two alternatives?
- 9. Sketch a cross section through a sanitary landfill and name all associated components.
- points 5 10. Sketch a diagram of essential process components of a typical resource recovery plant.

#### Sub-total 68

#### National Examination, December 2013

### 04-Env-A6 - Solid Waste Engineering and Management

- points 6 11. You have been commissioned to devise a strategy for extending the life of a community landfill. Outline what you would propose.
- points 3 12. State three methods commonly used to estimate municipal refuse quantities.
- points 7

  13. In your first position as junior city engineer you are assigned to report on the generation rates and composition of solid wastes from various sources of your community.
  - 13.1 How would you go about it?
  - 13.2 If these data were needed in 30 days and thus you had no time to assess seasonal effects, how would you estimate this factor?
- points 7

  14. You are retained by a municipality to assess the feasibility of building a waste-to-energy conversion plant and use this energy to supply their local industrial park.
  - 14.1 Outline in point form the approach you would take in conducting this assessment.
- points 6

  15. Municipal solid wastes from packer trucks are placed and well compacted in a sanitary landfill in three lifts, each 2 m deep, separated by a 250 mm clay layer and topped with a 1 m thick clay cap having a 4% slope. If annual precipitation in the area is 900 mm, of which 67% is lost through evapotranspiration.
  - 15.1 estimate the quantity of leachate that will be generated
  - 15.2 estimate the time until the refuse is saturated and the leachate flows from the landfill

#### assume:

- density of the waste as delivered = 300 kg/m<sup>3</sup>
- average moisture content as delivered = 25% by weight
- density of well compacted landfill = 600 kg/m<sup>3</sup>
- maximum moisture content of compacted refuse = 30 % by volume
   make and state clearly any other assumptions made
- points 3 16. Name 3 variables that govern landfill gas production.

#### Total 100