### National Exam, December, 2018

#### 16-Elec-A1 Circuits

#### 3 hours duration

#### **NOTES:**

- 1. <u>No questions to be asked</u>. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- 2. Candidates may use one of two calculators, a Casio or Sharp approved model . No programmable models are allowed.
- 3. This is a closed book examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please indicate in the front page of your answer book which questions you want to be marked. <u>If not indicated, only</u> the first five questions as they appear in your answer book will be marked.
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. Some useful equations and transforms are given in the last page of this question paper.

- Q1: For the circuit shown in Figure-1,
  - (a) Calculate the equivalent resistance of the circuit , RAB at the terminals A and B. [10]
  - (b) Solve for the current I at the location shown.
  - (c) Calculate the Power dissipation in the  $12\Omega$  resistance. [5]



Figure-1

Q2: In the Figure-2 solve the voltage, V<sub>o</sub> by the Superposition theorem.



Figure-2

[5]

[20]

Q3: In Figure-3, the switch was in position-A for a long time. At t = 0, it is moved to Position-B.



(a) For the circuit shown in Figure-4, calculate the load resistance R<sub>L</sub> to be connected across the terminals a and b for maximum power dissipation. [10]

(b) Calculate this maximum possible power dissipation in R<sub>L</sub>. [10]

Figure-3



Q4:

- Q5: (a) Write the Node Voltage equations of the following ac circuit, Figure-5, where the frequency is 60 Hz. [8]
  - (b) Solve the node voltages, and calculate the power supplied by the voltage source, e. [6+6]



- Q6: (a) In the circuit shown in Figure-6, the switch was on position-a for a long time. At t = 0, the switch is moved to position-b. Calculate  $V_c(0^+)$  and  $i(0^+)$ . [4]
  - (b) Draw the Laplace Transformed circuit at  $t \ge 0$ . [8]

(c) Solve  $V_c(t)$ . [8]



# **Appendix**

## Some useful Laplace Transforms:

| <u>f(t)</u>                       | <b>&gt;</b> | $\underline{\mathbf{F}(\mathbf{s})}$          |
|-----------------------------------|-------------|-----------------------------------------------|
| Ku(t)                             |             | K/s                                           |
| $\partial(t)$                     |             | 1                                             |
| t                                 |             | $1/s^2$                                       |
| e <sup>-at</sup> u(t)             |             | 1 / (s+a)                                     |
| sin wt .u(t)                      |             | $w / (s^2 + w^2)$                             |
| cos wt . u(t)                     |             | $s / (s^2 + w^2)$                             |
| e <sup>-αt</sup> sin ωt           |             | $\frac{\omega}{(s+\alpha)^2+\omega^2}$        |
| $e^{-\alpha t}cos \omega t$       |             | $\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$    |
| $\frac{df(t)}{dt}$                |             | $s F(s) - f(0^-)$                             |
| $\frac{d^2f(t)}{dt^2}$            |             | $s^2F(s) - s f(0^-) - f^1(0^-)$               |
| $\int_{-\infty}^{\iota} f(q)  dq$ |             | $\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$ |

### Star - Delta conversion:



$$Z_1 = \frac{Z_b \cdot Z_c}{Z_a + Z_b + Z_c}$$
  $Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$   $Z_3 = \frac{Z_a \cdot Z_b}{Z_a + Z_b + Z_c}$ 

$$Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a.Z_b}{Z_a + Z_b + Z_c}$$

$$Z_a = \frac{Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1}{Z_1}$$
  $Z_b = \frac{Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1}{Z_2}$ 

$$Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2}$$

$$Z = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_3}$$