National Exams May 2015
04-BS-1, Mathematics
3 hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

1. (a) 7 marks, (b) 7 marks, (c) 6 marks
2. 20 marks
3. (a) 6 marks, (b) 8 marks, (c) 6 marks
4. 20 marks
5. 20 marks
6. (a) 10 marks, (b) 10 marks
7. 20 marks
8. 20 marks
9. Find the general solutions of the following differential equations:
(a) $y^{\prime}+2 x y=2 x e^{-x^{2}}$,
(b) $y^{\prime}+2 x y^{2}=0$,
(c) $y^{\prime \prime}-2 y^{\prime}+3 y=0$.

Note that in each case, ' denotes differentiation with respect to x.
2. Find the general solution, $y(x)$, of the differential equation

$$
2 x^{2} y^{\prime \prime}-5 x y^{\prime}-4 y=3 x^{4}
$$

Note that ' denotes differentiation with respect to x.
3. Consider the matrix

$$
A=\left(\begin{array}{ccc}
8 & -14 & -6 \\
4 & -6 & -4 \\
-2 & -2 & 4
\end{array}\right)
$$

(a) Show that $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$ is an eigenvector of A and find the associated eigenvalue.
(b) Show that 2 is an eigenvalue of A and find an associated eigenvector.
(c) Using the results of parts (a) and (b), write down two solutions to the linear system $\mathrm{x}^{\prime}=\mathbf{A x}$.
4. Find the work done by the field $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}-z \mathbf{k}$ in moving a particle from the point $(0,2,0)$ to the point $(3 \pi, 0,2)$ along the path $x=6 t, y=2 \cos t, z=2 \sin t$.
5. Find the equation of the plane tangent to the surface defined implicitly by $x y^{2} z^{3}=2+y$ at the point $(x, y, z)=(3,4,1 / 2)$
6. Let P be the plane passing through the three points $(2,1,-2),(1,2,0)$ and $(1,0,-1)$.
(a) Find an equation representing the plane P.
(b) Find the line of intersection between the plane P and the plane $x+y-2 z=3$
7. Find out what type of conic section (e.g., parabola, hyperbola, or ellipse) the following quadratic form represents and transform it to principal axes. (That is, find new variables u and v so that $Q=a u^{2}+b v^{2}$.)

$$
Q=-2 x^{2}+12 x y+7 y^{2}=156
$$

8. Let S be the boundary of the region enclosed by the paraboloid $z=x^{2}+y^{2}-2$ and the plane $z=2$ and let

$$
\mathbf{F}(x, y, z)=x y^{2} \mathbf{i}+2 x y z \mathbf{j}-x z^{2} \mathbf{k}
$$

Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$, where \mathbf{n} is the unit outward normal on S.

