Elec-B5, Advanced Electronics

May 2015

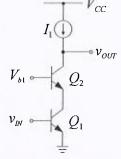
National Exams May 2015

07-Elec-B5, Advanced Electronics

3 hours duration

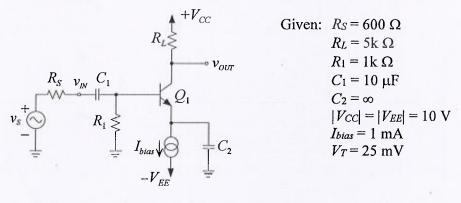
Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**. Any non-communicating calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.


Elec-B5, Advanced Electronics

QUESTION (1) (Razavi, Example 9.9, pg. 405)

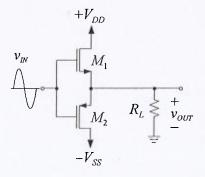
In this circuit, the bipolar transistors are biased with a current of $I_1 = 1$ mA. V_{b1} is a DC bias voltage. Determine the voltage gain v_{OUT}/v_{IN} . (20 points)


Given:

 $\beta = 100$ $V_A = 5 V$ (Early Voltage)

QUESTION (2)

In the following circuit, assume that $\beta = 100$, $V_{BE} = 0.7$ V, $V_{CE(sat)} = 0.3$ V, $V_A = 100$ V, $C_{\mu} = 2$ pF for all transistors. Neglect r_x and r_o in the hybrid- π model.



a) Estimate the mid-band gain v_{OUT}/v_s in (V/V).	(4 points)
b) Find the lower 3dB frequency f_L in (Hz).	(4 points)
c) Find the upper 3dB frequency f_H in (Hz).	(6 points)

d) Find the 2^{nd} high frequency dominant pole in (Hz).

QUESTION (3)

The following is a class B output stage.

Given: $K = 500 \text{ mA/V}^2$, $V_{TH} = 1.0 \text{ V}$, $R_L = 8 \Omega$ and $|V_{DD}| = |V_{SS}| = 10 \text{ V}$. a) The maximum RMS output power. (4 points) b) The RMS power dissipated by M_1 under maximum output power. (8 points)

c) The power efficiency, η of this output stage. (8 points)

(6 points)

May 2015

Elec-B5, Advanced Electronics

QUESTION (4)

triode region

saturation region

In the following circuits, assume all transistors have the following parameters:

 $K = 0.5 \text{ mA/V}^2$, $|V_{TH}| = 1 \text{ V}$ and $\lambda = 0.02$.

Given:

 $V_{bias} = 8 V$ $V_{DD} = 10 V$ $R = 2 k\Omega$

a) Estimate the differential gain v_{OUT}/v_{IN} in (V/V).

 M_4

 v_{OUT}

V

 $\leq R$

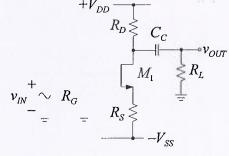
 M_1

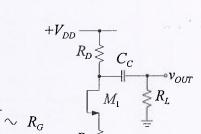
b) Find the common mode input resistance Ricm.

 M_2

- c) Find the common mode input range.
- d) Estimate the common mode rejection ratio, CMRR. Express your result in dB.

QUESTION (5)


This circuit is intended for audio application. Determine the maximum value for C_c such that the lower corner frequency for this amplifier is (20 points) $f_L = 20 \text{ Hz}.$


Given:

$V_{DD} = V_{SS} = 5\mathrm{V},$	
$K_n = 0.5 \text{ mA/V}^2$	$V_{TH} = 1 V$
$R_D = 6.7 \mathrm{k}\Omega,$	$R_S = 5 \text{ k}\Omega$
$R_G = 50 \text{ k}\Omega$	$R_L = 10 \text{ k}\Omega$

Useful formulae: for n-channel MOSFETs

$$i_{DS} = K \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
$$i_{DS} = \frac{1}{2} K \left(v_{GS} - V_{TH} \right)^2$$
$$g_m = K (V_{GS} - V_{TH})$$

May 2015

(6 points) (4 points)

(4 points) (6 points)