National Exams May 2018

17-Pet-A6, Reservoir Mechanics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM. Any non-communicating calculator is permitted.
- 3. Clarity and organization of the answer are important.

Question 1 Marks

10

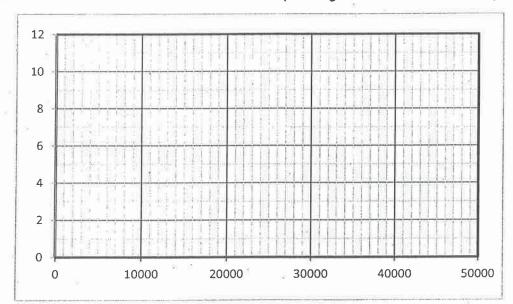
A confined reservoir with pore volume of one billion res bbl has been produced for 6 years at an average production rate of 10,000 STB per day. The reservoir pressure was 5,000 psi when the production began. Assuming an average total compressibility of 10^-5 psi⁻¹ and average oil formation volume factor of 1.4 res bbl/STB during this period assess its current average reservoir pressure.

Question 2

Marks

15

The following data apply to an oil reservoir.

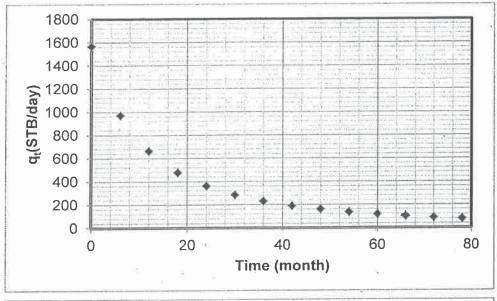

	9	117				
Ρ =	Во	Rs	Bg	Np	Gp →	
(psia)	(res bbl/ST	B) (scf/STB)	(res bbl/scf)	(MMSTB)	(MMscf)	
3000	1.316	650		0.000	0.0	
2500	1.324	650	0.00082	0.092	59.8	
1500	1.252	510	0.00135	0.850	490.0	
1300	1.231	450	0.00160	1.100	970.0	

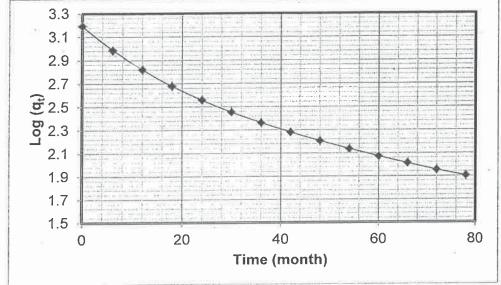
Reservoir saturation pressure is 2500 psi and the current reservoir pressure is 1300 psi Connate water saturation is 20%. There has been no water production.

Additional data:

$$c_0 = 15 \times 10^{-6} \text{ psi}^{-1}$$

Use straight-line solution for MBE along with the Pot model for water influx and evaluate OOIP and cumulative water influx corresponding to the current reservoir pressure.




Question 3

Marks

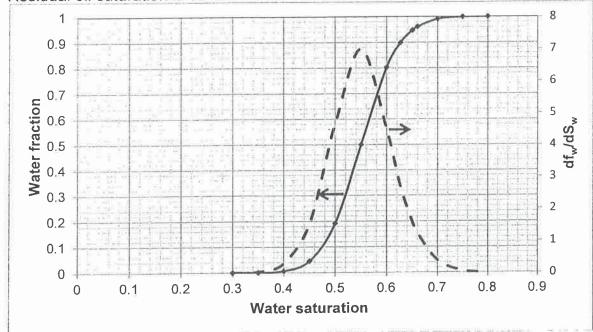
The production history for a well is given in the table and figures below.

Date	Time (month)	Production rate (STB/day)
7/1986	0	1,568
1/1987	6	970
7/1987	12	664
1/1988	18	478
7/1988	24	363
1/1989	30	285
7/1989	36	230
1/1990	42	191
7/1990	48	161
1/1991	54	137
7/1991	60	118
1/1992	66	103
7/1992	72	90
1/1993	78	80

17-Pet-A6/May 2018 Page 4 of 8

a) Use Hyperbolic Decline Method and calculate the projected rate at the end of 1995 (9.5 years after the start of production). 10 b) Calculate the incremental cumulative production from 1/1992 to 12/1995 (Month 66 to Month 10 114)

Question 4 Marks


10

A waterflood is under consideration for a narrow "shoestring" reservoir that is 300 ft wide, 20 ft thick and 1,000 ft long. The reservoir is horizontal and has a porosity of 0.15 and an initial water saturation of 0.30, which is considered immobile. It is proposed to drill a row of injection wells at one end of the reservoir and flood the reservoir by injecting water at a rate of 350 bbl/day. Viscosities of the oil and water are 2.0 and 1.0 cp, respectively. Relative permeability data corresponding to the displacement of oil by water are given below:

$$k_{ro} = (1 - S_{wD})^3$$
and
$$k_{rw} = (S_{wD})^4$$

$$S_{wD} = \frac{S_w - S_{wi}}{1 - S_{arw} - S_{wi}}$$

Residual oil saturation is 0.20. Oil and water formation volume factors are 1.0.

a) Estimate cumulative oil production when water saturation at the production wells is 66%

10 b) Estimate cumulative water production when water saturation in the production well is 66%

c) Calculate areal sweep efficiency after injecting 25,000 bbl of water.

10

Question 5

Marks

25

A volumetric (no water influx) oil reservoir with an initial pressure of 3,100 psia and saturation pressure of 1,700 psia covers a 1,000 acres area. The reservoir has an average connate water saturation of 20%, an average porosity of 20% and a critical gas saturation of 5%. The PVT data of the petroleum fluid at the reservoir temperature of 130 °F are listed below:

g).
į

Predict the reservoir performance (N_p , G_p , R_p , S_o , GOR) after reservoir pressure declines to 1,600 psia.