National Exams - May 2019

12-Mtl-A1, Materials Thermodynamics

3 hours duration

NOTES:

- If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK EXAM but one aid sheet written on both sides is allowed. An approved Casio or Sharp calculator is allowed.
- 3. All FIVE (5) questions need to be answered.
- 4. The value of each question is listed at the end of the question.
- 5. Clarity and organization of the answer are important.
- 6. Values of the Universal Gas Constant (R) in various units are listed below:

Table A.2: Values of the Universal Gas Constant

```
R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} = 8.314 \text{ m}^{3} \text{ Pa mol}^{-1} \text{ K}^{-1}
= 83.14 \text{ cm}^{3} \text{ bar mol}^{-1} \text{ K}^{-1} = 8.314 \text{ cm}^{3} \text{ kPa mol}^{-1} \text{ K}^{-1}
= 82.06 \text{ cm}^{3} (\text{atm}) \text{ mol}^{-1} \text{ K}^{-1} = 62,356 \text{ cm}^{3} (\text{torr}) \text{ mol}^{-1} \text{ K}^{-1}
= 1.987 (\text{cal}) \text{ mol}^{-1} \text{ K}^{-1} = 1.986 (\text{Btu}) (\text{lb mole})^{-1} (\text{R})^{-1}
= 0.7302 (\text{ft})^{3} (\text{atm}) (\text{lb mol})^{-1} (\text{R})^{-1} = 10.73 (\text{ft})^{3} (\text{psia}) (\text{lb mol})^{-1} (\text{R})^{-1}
= 1,545 (\text{ft}) (\text{lb}_{f}) (\text{lb mol})^{-1} (\text{R})^{-1}
```

The partial molar excess Gibbs free energies for chromium in L nickel for various with solutions compositions at a temperature of 1600 °C are listed below:

$\underline{X}_{\mathtt{Cr}}$	$\Delta G^{\mathrm{E}}_{\mathrm{Cr}}$, in Joules
0.1	- 12714
0.3	- 5442
0.5	- 339
0.7	- 921
0.9	- 1227

Determine the following:

- Activity coefficient of Cr in the dilute region (a)
- Activity coefficient of Ni in the Cr-Ni binary solution at XNi (b) = 0.7
- Partial molar excess Gibbs free energy of Ni at $X_{Ni} = 0.7$ (c)
- Integral molar excess Gibbs free energy of mixing of the (d) solution at $X_{Ni} = 0.7$
- Integral molar Gibbs free energy of mixing of the solution (e) at $X_{Ni} = 0.7$

(25%)

The equilibrium constants for the reversible reactions 2.

FeO (s) + CO (g)
$$\leftrightarrow$$
 Fe (s) + CO₂ (g) equilibrium constant = K_1 FeO (s) + H_2 (g) \leftrightarrow Fe (s) + H_2 O (g) equilibrium constant = K_2

at various temperatures are given below:

T (°C) → 600 800 1000

$$K_1$$
 → 0.900 0.535 0.396
 K_2 → 0.332 0.499 0.668

Calculate the equilibrium constant and standard Gibbs free energy change for the following reversible reaction at temperatures of 600, 800, and 1000 °C:

CO (g) +
$$H_2O$$
 (g) \leftrightarrow at 727 °C CO_2 (g) + H_2 (g) (15%)

3. Equimolar quantities of zinc oxide and carbon are placed in a closed reactor with idealistically no air left, and then heated to a temperature of 897 °C. The following equilibrium chemical reactions take place:

$$ZnO(s) + C(s) \leftrightarrow Zn(g) + CO(g)$$

 $CO_2(g) + C(s) \leftrightarrow 2CO(g)$

Assuming the activities of the pure solids to be 1, determine the partial pressures of Zn vapor, CO, and CO₂ after equilibrium has been established.

Standard Gibbs Free Energy Change (AGo) in J/K

For C (s) +
$$\frac{1}{2}$$
 O₂ (g) \Rightarrow CO (g) Δ G° = $-111,700 - 87.65$ T
For C (s) + O₂ (g) \Rightarrow CO₂ (g) Δ G° = $-394,100 - 0.84$ T
For Zn (g) + $\frac{1}{2}$ O₂ (g) \Rightarrow ZnO (s) Δ G° = $-460,200 + 198$ T (20%)

4. Consider the following reaction

$$7 \text{ Cr}_3\text{C}_2 \text{ (s)} + 2.5 \text{ O}_2 \text{ (g)} \rightarrow 3 \text{ Cr}_7\text{C}_3 \text{ (s)} + 5 \text{ CO (g)}$$

- (a) Obtain an expression for the standard Gibbs free energy (ΔG°) as a function of temperature (T).
- (b) Calculate ΔG° for the reaction at T = 1500 K and 298 K.
- (c) Calculate ΔG° for the reaction at T = 1500 K and 298 K using the equation $\Delta G^{\circ} = \Delta H^{\circ}_{298}$ T ΔS°_{298} .
- (d) Compute the percentage difference in ΔG° for the reaction at T=1500 K and 298 K from the results obtained in part (b) and part (c).

Molar Specific Heat (Cp) in cal/mol K

$$\begin{array}{lll} \text{For } \mathrm{Cr_7C_3} \to & \mathrm{C_p} = 56.96 + (14.54 \times 10^{-3} \ \mathrm{T}) - (10.12 \times 10^5 \ \mathrm{T^{-2}}) \\ \text{For } \mathrm{CO} \to & \mathrm{C_p} = 6.79 + (0.98 \times 10^{-3} \ \mathrm{T}) - (0.11 \times 10^5 \ \mathrm{T^{-2}}) \\ \text{For } \mathrm{Cr_3C_2} \to & \mathrm{C_p} = 30.03 + (5.58 \times 10^{-3} \ \mathrm{T}) - (7.46 \times 10^5 \ \mathrm{T^{-2}}) \\ \text{For } \mathrm{O_2} \to & \mathrm{C_p} = 7.16 + (1.00 \times 10^{-3} \ \mathrm{T}) - (0.40 \times 10^5 \ \mathrm{T^{-2}}) \end{array}$$

Standard Molar Heat of Formation (AH°298) in cal/mol

For $Cr_7C_3 \rightarrow$	$\Delta H^{\circ}_{298} = -54,500$
For CO →	$\Delta \text{H}^{\circ}_{298} = -26,420$
For Cr ₃ C ₂ →	$\Delta \text{H}^{\circ}_{298} = -26,200$
For $O_2 \rightarrow$	$\Delta \mathrm{H}^{\circ}_{298} = 0$

Standard Entropy of Formation (ASo298) in cal/mol K

For $Cr_7C_3 \rightarrow$	$\Delta S_{298} = 48.00$	
For CO →	$\Delta S^{\circ}_{298} = 47.22$	
For $Cr_3C_2 \rightarrow$	$\Delta S^{o}_{298} = 20.40$	
For $O_2 \rightarrow$	$\Delta S_{298} = 49.00$	
		(25%)

5. For the equilibrium reaction

$$ZrO_2$$
 (s) \leftrightarrow Zr (s) + O_2 (g)

the standard Gibbs free energy change is given by the equation

$$\Delta G^{\circ} = 1,089,329 + 26.96 \text{ T log T} - 276.27 \text{ T in J/mole}$$

Calculate the following at a temperature of 2073 K:

- (a) Equilibrium constant
- (b) Equilibrium partial pressure of oxygen
- (c) Predict the possibility of decomposing a pure ZrO₂ crucible under a vacuum of 10⁻⁸ atm. Assume the initial composition of the gas in the evacuated chamber to be that of air.

OR

Calculate the equilibrium constant for the following reaction at 727 °C:

FeO (s) + CO (g)
$$\leftrightarrow$$
 Fe (s) + CO₂ (g)

Will pure FeO form if a pure iron sheet is annealed at 727 °C in an atmosphere containing 12% by volume CO, 1.5% by volume CO₂ and 86.5% by volume N₂?

Standard Gibbs Free Energy Change (AGo) in J/K

For C (s) + $\frac{1}{2}$ O₂ (g) \rightarrow CO (g) Δ G° = -111,700 - 87.65 T For C (s) + O₂ (g) \rightarrow CO₂ (g) Δ G° = -394,100 - 0.84 T Δ G° = -263,700 + 64.35 T

(15%)