National Exams December 2015

04-CHEM-A3 (Mass Transfer Operations)

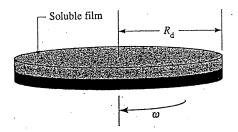
Three-Hour Duration

NOTES:

- 1) If doubt exists as to the interpretation of any question, you are urged to submit a clear statement of any assumptions made along with the answer paper.
- 2) Property data required to solve a given problem are provided in the problem statement or are available in the recommended texts. If you are unable to locate the required data, do not let this prevent you from solving the rest of the problem. Even in the absence of property data, you still have the opportunity to provide a solution methodology.
- 3) This is an open-book exam.
- 4) The examination is in three parts Part A (Questions 1 and 2)

Part B (Questions 3 and 4)

Part C (Questions 5 to 7)


- 5) Answer **ONE** question from Part A, **ONE** question from Part B, and **TWO** questions from Part C. **FOUR** questions constitute a complete paper.
- 6) Each question is of equal value.

PART A

- 1) A mixture of nitrogen gas (A) and helium gas (B) at 298 K is diffusing through a capillary 0.1 m long in an open system with a diameter of 10 μ m. The mole fractions are constant at $X_{A1} = 1.0$ and $X_{A2} = 0$, and the binary diffusivity (D_{AB}) at 1 atm is 6.98 x 10⁻⁵ m²/s.
 - (a) Calculate the Knudsen diffusivities (D_{KA} and D_{KB}) at total pressure of 0.001, 0.1 and 10 atm.
 - (b) Calculate the steady-state flux N_A at total pressure of 0.001, 0.1 and 10 atm.
 - (c) Plot steady-state flux N_A versus total pressure P on a log-log paper.
 - (d) Plot the limiting lines at lower pressures (Knudsen diffusion) and very high pressures (molecular diffusion) on the same log-log plot from part (c).
 - (e) Calculate the steady-state flux N_A for Knudsen diffusion and molecular diffusion regions.
- 2) A total of 5 grams of wet microorganisms having a density of 1100 kg/m^3 and a diameter of $0.667 \mu m$ are added to 100 ml aqueous solution at $37 \text{ }^{\circ}\text{C}$ in a shaker flask for fermentation. Air can enter through a porous stopper.
 - (a) Calculate the maximum rate possible for mass transfer of oxygen in kg moles of O_2 per second to the surface of the microorganisms. Assume that the solution is saturated with air at 101.32 kPa absolute pressure.
 - (b) By material balances on other nutrients, the actual utilization of O_2 by the microorganisms is 6.3×10^{-6} kg moles per second. What would be the actual concentration of O_2 in the solution as percent saturation during the fermentation?
 - DATA: Solubility of O_2 from air in water at 37 °C = 2.26 x 10^{-4} kg moles/m³ Diffusivity of O_2 in water at 37 °C = 3.25 x 10^{-9} m²/s Density of water at 37 °C = 994 kg/m³ Viscosity of water at 37 °C = 6.947 x 10^{-4} Pa.s = 6.947 x 10^{-4} kg/m.s Density of air at 37 °C = 1.13 kg/m³

PART B

3) A "spinning disk" mass transfer device is designed as shown in the figure below.

A solid disk rotates about an axis normal to its circular face and is immersed in a large volume of fluid. Except for the motion induced by the rotation of the disk, there is no imposed convective flow in the system. The surface of the disk is coated with a solid film of a material that is soluble in the surrounding fluid. A significant motion is induced by the rotation of the disk, and this motion gives rise to significant convective mass transfer from the disk surface.

Studies have shown that the convective mass transfer coefficient (k_c , in cm/s) is given by the equation

$$k_c = 0.62 (D_{AB})^{0.667} (v)^{-0.167} (\omega)^{0.5}$$

where $D_{AB} \rightarrow diffusion$ coefficient of the solute in the fluid (in cm²/s)

- ∇ \rightarrow kinematic viscosity (μ/ρ) of the fluid (in cm²/s)
- \Box $\omega \rightarrow$ rotational speed of the disk (in rad/s)
- (a) Define Reynolds number (Re) and Schmidt number (Sc) in terms of the parameters D_{AB} , ν , and ω .
- (b) Convert the convective mass transfer coefficient equation into the following non-dimensional form:

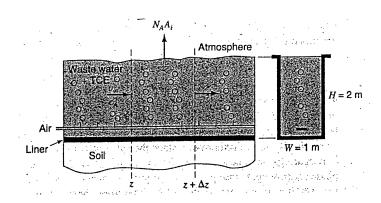
Sherwood number =
$$Sh = A (Re)^n (Sc)^m$$

(c) Obtain the values of constant A, n, and m.

4) The heat transfer correlation for a liquid flowing over a single cylinder is given by the following equation for Nusselt number (Nu):

$$Nu = h D/k = (0.506 Re^{0.5} + 0.00141 Re) Pr^{0.33}$$

where h o heat-transfer coefficient D o diameter of cylinder $k o thermal conductivity of cylinder <math>Pr o Prandtl number = C_p \mu/k$ $C_p o specific heat capacity of liquid <math>Pr o Prandtl number = C_p \mu/k$ Pr o density of liquid <math>Pr o density of liquid Pr o density of liquid


The above equation, in association with the Chilton-Colburn analogy, can be used to predict the mass-transfer coefficient for a cylinder.

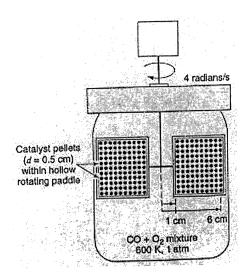
Estimate the mass-transfer coefficient k_L at 300 K for the dissolution of sodium chloride from a cast cylinder (diameter = 1.5 cm) made of solid sodium chloride (NaCl) and placed perpendicular to a flowing stream of water at a velocity of 10 m/s.

DATA: Binary liquid diffusivity (D_{AB}) at 291 K = $1.26 \times 10^{-9} \text{ m}^2/\text{s}$ Viscosity of water at 291 K = $1.073 \times 10^{-3} \text{ Pa.s}$ Viscosity of water at 300 K = $8.76 \times 10^{-4} \text{ Pa.s}$ Density of water = 996 kg/m^3

PART C

5) A very simple process to treat contaminated wastewater before discharge to a lake or river is the remediation trench as shown in the figure below.

The trench consists of a narrow outdoor open channel with an air sparger aligned along the bottom of the trench. Wastewater containing a volatile contaminant dissolved in the water enters one end of the trench. As the wastewater flows down the trench, the aeration gas strips out the dissolved volatile solute and transfer it to the surrounding atmosphere by an interphase mass-transfer process. Consequently, the concentration of the solute in the wastewater decreases down the length of the trench. Remediation trenches can be long, and may extend from a holding pond to the discharge point.


We wish to design an aerated remediation trench to treat wastewater contaminated with trichloroethylene (C_2HCl_3) at a concentration of 50 mg/L of wastewater. The process temperature is 293 K and the total system pressure is 1 atm. The trench is an open duct of 1 meter width (W) and 2 meters depth (H), and the volumetric flow rate of wastewater added to the trench is 0.1 m³/s. Air is sparged into the bottom of the duct at a rate that provides a gas holdup of 0.02 m³ of gas/m³ of water, and the average bubble diameter is 1 cm (d_b).

Determine the length of trench necessary to reduce the effluent trichloroethylene concentration to $0.05\ mg/L$ of treated wastewater.

DATA:

Henry's law constant for trichloroethylene in water = 9.97 atm m³/kg mole Diffusivity of the air in wastewater (D_{AB}) = 8.9 x 10^{-10} m²/s Viscosity of the wastewater = 9.93 x 10^{-4} kg/m.s Density of the wastewater = 998.2 kg/m³ Density of the air = 1.19 kg/m³

6) Consider the well-mixed, continuous-flow spinning catalyst paddle reactor shown in the figure below for carrying out catalytic gas-solid reactions under controlled hydrodynamic conditions.

Two hollow paddles, each with exposed faces of 5 cm in height and width, are mounted on an impeller shaft 1 cm from centerline. Spherical, non-porous solid catalyst pellets of 0.5 cm diameter are held within each paddle by a screen. As the impeller shaft rotates, gas flows through the paddle and over each spherical pellet. Since there is only one layer of spherical pellets within the hollow impeller paddle and individual pellets do not touch one another, mass transfer can be analyzed with respect to a single particle and not a packed bed of particles. Carbon monoxide gas diluted into a large amount of oxygen gas is fed into the reactor. The temperature and total pressure inside the vessel are 600 K and 1 atm. The carbon monoxide instantaneously reacts with oxygen on the outer surface of the catalyst pellet to form carbon dioxide.

- (a) Using boundary-layer theory of convective mass transfer, estimate the mean gas-film mass transfer coefficient (in cm/s) for carbon monoxide over the whole width of the paddle for a fixed rotation rate (□) of 4 radians/s.
- (b) Repeat the calculation for carbon dioxide.

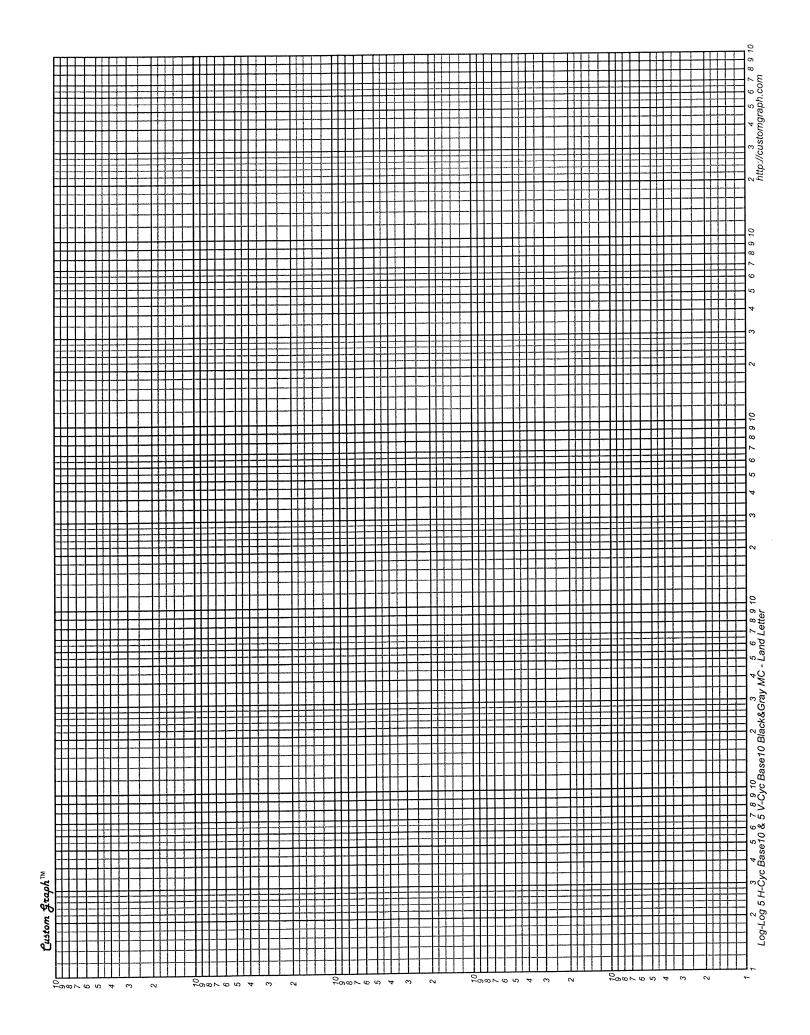
Table K.2 Lennard-Jones force constants calculated from viscosity data[†]

Compound	Formula	ϵ_A/κ , in (K)	σ, in Å	
Acetylene	C ₂ H ₂	185	4.221	
Air		97	3.617	
Argon	Α	124	3.418	
Arsine	AsH ₃	281	4.06	
Benzene	C_6H_6	440	5.270	
Bromine	Br_2	520	4.268	
i-Butane	C_4H_{10}	313	5.341	
n-Butane	C_4H_{10}	410	4.997	
Carbon dioxide	CO ₂	190	3.996	
Carbon disulfide	CS ₂	488	4.438	
Carbon monoxide	co	110	3.590	
Hydrogen iodide	Н	324	4.123	
Iodine	I_2	550	4.982	
Krypton	- Kr	190	3.60	
Methane	CH ₄	136.5	3.822	
Methanol	CH ₃ OH	507	3.585	
Methylene chloride	CH ₂ Cl ₂	406	4.759	
Methyl chloride	CH ₃ Cl	855	3.375	
Mercuric iodide	Hgl_2	691	5.625	
Mercury	Hg	851	2.898	
Neon	Ne	35.7	2.789	
Nitric oxide	NO	119	3.470	
Nitrogen	N_2	91.5	3.681	
Nitrous oxide	N₂O	220	3.879	
n-Nonane	C ₉ H ₂₀	240	8.448	
n-Notane	C ₈ H ₁₈	320	7.451	
Oxygen	O_2	113	3.433	

Collision integral Ω_D

HATE BEEN ENDER		PROSESSE AND PROPERTY OF			
kT		kT		kT	
$\overline{arepsilon_{12}}$	Ω_D	$\overline{\varepsilon_{12}}$	Ω_D	€12	Ω_D
0.30	2.662	1.65	1.153	4.0	0.8836
0.35	2.476	1.70	1.140	4.1	0.8788
0.40	2.318	1.75	1.128	4.2	0.8740
0.45	2.184	1.80	1.116	4.3	0.8694
0.50	2.066	1.85	1.105	4.4	0.8652
0.55	1.966	1.90	1.094	4.5	0.8610
0.60	1.877	1.95	1.084	4.6	0.8568
0.65	1.798	2.00	1.075	4.7	0.8530
0.70	1.729	2.1	1.057	4.8	0.8492
0.75	1.667	2.2	1.041	4.9	0.8456
0.80	1.612	2.3	1.026	5.0	0.8422
0.85	1.562	2.4	1.012	6	0.8124
0.90	1.517	2.5	0.9996	7	0.7896
0.95	1.476	2.6	0.9878	8	0.7712
1.00	1.439	2.7	0.9770	9	0.7556
1.05	1.406	2.8	0.9672	10	0.7424
1.10	1.375	2.9	0.9576	20	0.6640
1.15	1.346	3.0	0.9490	30	0.6232
1.20	1.320	3.1	0.9406	40	0.5960
1.25	1.296	3.2	0.9328	50	0.5756
1.30	1.273	3.3	0.9256	60	0.5596
1.35	1.253	3.4	0.9186	70	0.5464
1.40	1.233	3,5	0.9120	80	0.5352
1.45	1.215	3.6	0.9058	90	0.5256
1.50	1.198	3.7	0.8998	100	0.5130
1.55	1.182	3.8	0.8942	200	0.4644
1.60	1.167	3.9	0.8888	400	0.4170

- A process is being developed to produce carbonated beverages. As part of this process, a packed-bed absorption tower is used to dissolve carbon dioxide gas into water. In the present process, pure mountain spring water containing no dissolved CO₂ enters the top of the tower at a flow rate of 5 kg moles/min. Pure CO₂ gas at 2 atm is also fed to the top of the tower at a flow rate of 1 kg mole/min. As the liquid flows down the tower, CO₂ gas absorbs into water, and the dissolved CO₂ concentration increases down the length of the bed. The carbonated water and the unused CO₂ gas exit the bottom of the tower. The absorption process is liquid-film controlling since only pure CO₂ is present in the gas phase. The tower is packed with 1-inch ceramic saddles, and the inner tower diameter is 0.25 m. The temperature is maintained at 20 °C, and Henry's law constant for the dissolution of CO₂ gas in water is 25.4 atm.m³/kg mole.
 - (a) What is the liquid-phase mass-transfer coefficient, $k_L a$, for CO_2 in water flowing through the packed bed?
 - (b) The desired concentration of dissolved CO₂ in the outlet liquid is 0.075 kg mole/m³, which corresponds to 95% of the saturation value for dissolved CO₂ in water under CO₂ partial pressure of 2 atm and 20 °C. What is the depth of packing necessary to attain this outlet concentration?


<u>DATA</u>: Density of liquid water = 998.2 kg/m^3 Viscosity of liquid water = $9.93 \times 10^{-4} \text{ kg/m.s}$ Binary diffusivity = $1.77 \times 10^{-9} \text{ m}^2/\text{s}$

Packing	α	n
2-in. rings	80	0.22
$1\frac{1}{2}$ -in. rings	90	0.22
1-in. rings	100	0.22
1/2-in. rings	280	0.35
3 8-in. rings	550	0.46
$1\frac{1}{2}$ -in. saddles	160	0.28
1-in. saddles	170	0.28
$\frac{1}{2}$ -in. saddles	150	0.28
3-in. spiral tiles	110	0.28

	C	1)	
•	t		į	
	7			
	C	Ľ)	
	2		-	
	ζ			
	してことしてい	Ľ)	
ī	7	-	1	
Ļ	J	_	l	
	`	Ļ	2	
-	してナセク	-		
	•	•	J	
•	;		:	
	(_)	
	•	1	`	
	_	ļ	2	
		1	2	
	C	T	7	
ļ	_	`	_	
•			_	
	C)	
:	-		5	
	(_	5	
_	(_)	
•	Š	_	-	
	ĺ	1	5	
1	つているって	ì	_	
۱	-	Ļ	-	
	(7	`	
	ì		2	
i	2	-	-	

								,								
18	Helium 2 2 He 4.00	Neon 10 Ne 20.18	Argon 18 Ar 39.95	1	36	֡֞֞֞֝׆֡֡ ֓	83.80	Xenon 54	Xe	131.29	Radon 86	R	(222)	Ununoctium 118	Ono	(294)
	17	Fluorine 9 F 1 9.00	Chlorine 17 CI 35.45	i	35	Ä.	08.87	lodine 53		126.90	Astatine 85	Αŧ	(210)	Ununseptium 117	Ons	(294 ?)
	16	Oxygen 8 0 16.00	Sulfur 16 \$ 32.07		34 34	Se	98.87	Tellurium 52	Це	127.60	Polonium 84	Ъо	(209)	Ununhexium 116	Ouh Cuh	(293)
	15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97		33 33	As	74.92	Antimony 51	Sb	121.76	Bismuth 83	ö	208.98	Ununpentium 115	dnn	(288)
	4	Carbon 6 C	Silicon 14 Si 28.09		Germanium 32	Ge	72.61	Tin 50	Sn	118.71	Lead 82	Pb	207.20	Ununquadium 114	bn0	(588)
οl	13	Boron 5 10.81	Auminum 13 AI 26.98		31 31	Ga	69.72	Indium 49	드	114.82	Thallium 81	F	204.38	Ununtium 113	Unt	(284)
	#	Avg. Mass		12	30 30	Zu	62.39	Cadmium 48	ၓ	112.41	Mercury 80	Нg	200.59	Copernicium 112	ပ်	(285)
	Atomic #	– Avg.		11	Copper 29	D C	63.55	Silver 47	Ag	107.87	90d 79	Αn	196.97	Roentgenium 111	Rg	(280)
	onry O +	. 59 ر		10	Nickel 28	Ē	58.69	Palladium 46	Pd	106.42	Platinum 78	ጟ	195.08	Darmstadtium 110	Ds	(281)
200	→ Mercury 80 ◆	119 200.59		6	Cobalt 27	ပိ	58.93	Rhodium 45	格	102.91	lridium 77	_	192.22	Meitnerium 109	¥	(276)
	ame			80	lron 26	Fe	55.85	Ruthenium 44	Ru	101.07	Osmium 76	SO	190.23	Hassium 108	Hs	(270)
2010	Element name. Symbol			7	Manganese 25	뚤	54.94	Technetium 43	<u>၁</u>	(86)	Rhenium 75	Re	186.21	Bohrium 107		
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田			9	Chromium 24	ပံ	52.00	Molybdenum 42	ω	95.94	Tungsten 74	>	183.84	Seaborgium 106	Sg	(271)
·	netals als ni-metal)			5	Vanadium 23	>	50.94	Niobium 41	qN	92.91	Tantalum 73	Ta	180.95	Dubnium 105		
	Alkali metals Alkaline earth metals Transition metals Other metals Metalloids (semi-metal)	Nonmetals Halogens Noble gases		4	Titanium 22	F	47.88	Zirconium 40	Z	91.22	Hafhium 72	Ï	178.49	Rutherfordium 104		(267)
	Alk Tra	N H N		ო	Scandium 21	လွ	44.96	Yttrium 39	>	88.91	Lutetium 71		174.97	Lawrencium 103		(262)
					·							∩/-/c 		000	**	
	8	Beryllium 4 Be 9.01	Magnesium 12 NG 24.31		Calcium 20	Ca	40.08	Strontium 38	Š	87.62	Barium 56	Ba	137.33	Radium 88	Ra	(226)
τ-	Hydrogen 1.01	Lithium 3 Li	Sodium 11 Na 22.99		Potassium 19	エ	39.10	Rubidium 37	8	85.47	Cesium	ဒိ	132.91	Francium 87	i L	(223)

Ytterbium 70 Yb 173.04	Nobelium 102 No (259)
Thullum 69 Tm 168.93	Mendelevium 101 Md (258)
Erbium 68 Er 167.26	Fermium 100 F.m (257)
Holmium 67 Ho 164.93	Einsteinium 99 ES (252)
Dy 162.50	Californium 98 Cf (251)
Terbium 65 Tb 158.93	Berkelium 97 BK (247)
Gadolinium 64 Gd 157.25	Curium 96 Cm (247)
Europlum 63 EU 151.97	Americium 95 Am (243)
Samarium 62 Sm 150.36	Plutonium 94 Pu (244)
Promethium 61 Pm (145)	Neptunium 93 Np (237)
Neodymium 60 Nd 144.24	Uranium 92 U 238.03
Praseodymium 59 Pr 140.91	Protactinium 91 Pa 231.04
Lanthanum Cerium 57 58	Thorium 90 Th 232.04
Lanthanum 57 La 138.91	Actinium 89 AC (227)
*lanthanides	**actinides

