National Exams May 2014

07-Mec-A3, SYSTEM ANALYSIS AND CONTROL

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use a Casio <u>or</u> Sharp approved calculator. This is a <u>closed book</u> exam. No aids other than semi-log graph papers are permitted.
- 3. Any four questions constitute a complete paper. Only the first four (4) questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Question 1:

A unity feedback system has an open-loop transfer function

G (s) =
$$\frac{200K}{s(s+2)(s+5)}$$

Obtain a Bode plot for this system when K = 1 and find the phase and gain margins.

Question 2:

Find the range of the parameter α for which all roots of the given characteristic equations are in the left halfpane.

(a)
$$s^3 + s^2 + s + \alpha = 0$$

(b)
$$s^3 + s^2 + \alpha s + 1 = 0$$

(c)
$$s^3 + \alpha s^2 + s + 1 = 0$$

(d)
$$\alpha s^3 + s^2 + s + 1 = 0$$

Question 3:

Consider the system with the open-loop function

$$KG(s)H(s) = \frac{50K}{(s+1)(s+2)(s+10)}$$

- (a) Sketch the root locus for this system for both positive and negative K.
- (b) Locate all crossings of the $j\omega$ -axis by the root locus, and find the value of K at each of these crossings.
- (c) From the results in (b), state the complete range of K for which the system is stable.

Question 4:

Suppose that, in the system in Figure 1, the controller is a proportional type, that is, $G_c(s) = K_p$.

- (a) Find the transient-response terms for the case that $K_p = 0.05$.
- (b) Find the transient-response terms for the case that $K_p = 0.5$.
- (c) Find the minimum value of K for which the transient response will have the fastest decay.

Question 5:

Consider the system shown in Figure 2. For each case given, find the steady-state error for (i) a unit step input; (ii) a unit ramp input. Assume in each case that the closed-loop system is stable.

(a)
$$G(s) = \frac{10}{(s+1)(s+2)}$$
 (b) $G(s) = \frac{10}{s(s+1)(s+5)}$

(c)
$$G(s) = \frac{5(s+2)}{s^2(s+6)}$$
 (d) $G(s) = \frac{6s^2 + 2s + 10}{s(s^2 + 3)}$

Figure 2

Question 6:

For the system of Figure 3, the input $r(t) = 3 \cos 0.4t$ is applied at t = 0.

- (a) Find the steady-state system response.
- (b) Find the range of time t for which the system is in steady state.
- (c) Find the steady-state response for the input $r(t) = 3 \cos 4t$.

Figure 3

Laplace Transform Table

U-oplate than form (III)	Time (i drietion						
1 '	Unit-impulse function $\delta(t)$						
<u>1</u>	Unit-step function u _s (t)						
1 s ²	Unit-ramp function t						
!n !***	t^* ($n = positive integer$)						
$\frac{1}{s+\alpha}$	e ^a						
$\frac{1}{(s+\alpha)^2}$	te ^{~∞r}						
$\frac{n!}{(s+\alpha)^{n+1}}$	$t^n e^{-\alpha t}$ (n = positive integer)						
$\frac{1}{(s+\alpha)(s+\beta)}$	$\frac{1}{\beta - \alpha} (e^{-\alpha} - e^{-\beta}) \ (\alpha \neq \beta)$						
$\frac{s}{(s+\alpha)(s+\beta)}$	$\frac{1}{\beta-\alpha}(\beta e^{-\beta x}-\alpha e^{-\alpha x}) \ (\alpha\neq\beta)$						
$\frac{1}{s(s+\alpha)}$	$\frac{1}{\alpha}(1-e^{-at})$						
$\frac{1}{s(s+\alpha)^2}$	$\frac{1}{\alpha^{1}}(1-e^{-a_{1}}-\alpha te^{-a_{2}})$						
$\frac{1}{s^2(s+\alpha)}$	$\frac{1}{\alpha^{1}}(\alpha t - 1 + e^{-\alpha t})$						
$\frac{1}{s^2(s+\alpha)^2}$	$\frac{1}{\alpha^2} \left[t - \frac{1}{\alpha} + \left(t + \frac{2}{\alpha} \right) e^{-\alpha t} \right]$						

Laplace Transform Table (continued)

*							
u e sa taplace i zatro niverza. Programa	f(t)						
<u>s</u> (s · 1· α) ^λ	$(1-\alpha t)e^{-\alpha t}$						
$\frac{\omega_s^2}{s^2 + \omega_s^2}$	· sin ω, t						
$\frac{s}{s^2 + \omega_s^2}$	cos ω _e t						
$\frac{\omega_s^1}{s(s^1+\omega_s^1)}$	$1-\cos\omega_a t$						
$\frac{\omega_n^2(s+\alpha)}{s^2+\omega_n^2}$	$\omega_{\star}\sqrt{\alpha^2 + \omega_{\star}^2} \sin(\omega_{\star}t + \theta)$ where $\theta = \tan^{-1}(\omega_{\star}t\alpha)$						
$\frac{\omega_{\lambda}}{(s+\alpha)(s^2+\omega_{\lambda}^2)}$	$\frac{\omega_n}{\alpha^2 + \omega_n^1} e^{-\alpha t} + \frac{1}{\sqrt{\alpha^2 + \omega_n^2}} \sin(\omega_n t - \theta)$ where $\theta = \tan^{-1}(\omega_n t - \theta)$						
$\frac{\omega_{\kappa}^{1}}{s^{1}+2\zeta\omega_{\kappa}s+\omega_{\kappa}^{1}}$	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\mu_n t}\sin\omega_n\sqrt{1-\zeta^2}t \qquad (\zeta<1)$						
$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta u, t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \theta)$ where $\theta = \cos^{-1} \zeta$ ($\zeta < 1$)						
$\frac{s\omega_a^2}{s^2+2\xi\omega_a s+\omega_a^2}$	$\frac{-\omega_{\alpha}^{1}}{\sqrt{1-\zeta^{2}}}e^{-i\omega_{\alpha}}\sin(\omega_{\alpha}\sqrt{1-\zeta^{2}}t-\theta)$ where $\theta=\cos^{-1}\zeta$ ($\zeta<1$)						
$\frac{\omega_{\pi}^{2}(s+\alpha)}{s^{2}+2\zeta\omega_{\pi}s+\omega_{\pi}^{2}}$	$\omega_{a} \sqrt{\frac{\alpha^{2} - 2\alpha \zeta \omega_{a} + \omega_{a}^{2}}{1 - \zeta^{2}}} e^{-i\omega_{s}} \sin(\omega_{e} \sqrt{1 - \zeta^{2}} t + \theta)$ where $\theta = \tan^{-1} \frac{\omega_{c} \sqrt{1 - \zeta^{2}}}{\alpha - \zeta \omega_{a}}$ ($\zeta < 1$)						
$\frac{\omega_n^2}{s^2(r^2+2\zeta\omega_n r+\omega_n^2)}$	$i - \frac{2\zeta}{\omega_n} + \frac{1}{\omega_n^2 \sqrt{1 - \zeta^2}} e^{-2\omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \theta)$ where $\theta = \cos^{-1}(2\zeta^2 - 1)$ ($\zeta < 1$)						

12-184E	<u> </u>			
Time of U. S. A.	8			
	6			
3	5 4			
•	3			
				
	. 2			
	1			
	9 8			
	6			
	5			
	4			
	3			
	2			
	· 1			
ال:	· 8			
	7 . 6			
	5			
	4			
	3			
	2			
•				
_	_			
	1 9 8			
-	7 6			
	5			
	4			
	3			
	2			
•				
-				
	1			