National Examination - May 2019

04-BS-16, Discrete Mathematics

Duration: 3 hours

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK exam.
- 3. An approved Casio or Sharp calculator is acceptable.
- 4. Answer 10 of the 12 questions.
- 5. Clearly indicate which questions you do not want to answer both below on this page and on the corresponding exam page by drawing a diagonal line through it.

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	10	10	10	10	10	10	10	10	10	10	10	10	100
Score:													

- 1. Answer the following questions on propositions and their relations.
 - (a) 3 points Write the negation of the proposition " $\exists x \ 2x^2 \le x-1$ " using the identifier \forall .

(b) 3 points Write the truth table for the proposition $(\neg r \lor q) \to (p \lor r)$. (Note: $\neg s$ is the negation of s.)

(c) 4 points Determine whether $\forall x (P(x) \to Q(x))$ has the same truth value as $\forall x P(x) \to \forall x Q(x)$.

- 2. Answer the following questions related to truth of propositions.
 - (a) 3 points Determine the truth value of " $\forall n \quad 4n^2 > 4n 1$ " where the universe of discourse is the set of integers.

(b) 2 points Determine the truth value of the following proposition "If 2 > 5 then $\forall x, x^2 < x^2 - 5$."

(c) 2 points Write an equivalent proposition for $(\neg p \lor q) \land (p \lor q)$ in the simplest form that you can.

(d) 3 points Prove the following proposition is an tautology: $(\neg(p \lor \neg q) \land \neg q) \rightarrow r$.

- 3. Answer the following questions related to set theory.
 - (a) 3 points If $A = \{0, 1, 2, 3\}$ and $B = \{1, 3, 4, 5\}$, find $(A \cap B) \times (A B)$.

(b) 4 points Let A, B and C be sets. Using algebra of sets show that $(A-B) \cup (B-A) = (A \cup B) - (A \cap B)$.

(c) 3 points Let A, B be two sets, prove that $B \subset (A - B)^c$.

- 4. Answer the following questions related to discrete probability.
 - (a) 5 points A fair six-sided die is rolled twice. Find the probability that the sum of the two rolls is 9.

(b) 5 points A TV factory has three production lines A,B and C. Lines A,B and C produce 35%, 50% and 15% of the total respectively. Also, of the outputs of lines A, B and C, 2%, 5% and 1% are defective, respectively. A random TV from this company is found the be defective. Find the probability that it was produced by line C.

- 5. Answer the following questions related to functions.
 - (a) 2 points Determine if $f(n) = \sqrt{n^2 9}$ is a function from \mathbb{Z} to \mathbb{R} .

(b) 2 points Find the range of function $f(x) = \sqrt{x^2 + 16}$ if the domain of f is $x \in \mathbb{R}$.

(c) 2 points Determine if the function $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = 5x^5 + 5$ is one-to-one.

(d) 4 points Consider functions f and g both defined from \mathbb{R} to \mathbb{R} . Also $f(x) = x^5$ and $(f+g)(x) = x^5 + x^3$. Find $f^{-1}(x)$ and $g \circ f(x)$.

6. This is a question on counting. Consider the permutations of the letters of the word ENGINEERING. (a) 2 points How many are there in total? (b) 2 points How many start with R and end with G? (c) 2 points How many start with a vowel? (d) 2 points How many have all the E's together as "EEE"? (e) 2 points How many start with ING and end with ING.?

- 7. This is a question on series and sequences.
 - (a) 5 points Prove that the sum of all elements of the set $A = \{1, 5, 9, ..., 4n 1\}$ is $S = 2n^2 n$.

(b) 5 points Let us define $a_1 = 2$ and $a_i = a_{i-1} + 2i - 1$. Prove that $a_n = n^2 + 1$.

- 8. This is a question on methods of proof.
 - (a) 5 points Without using induction, prove that for any positive integer n, $n^3 n$ is divisible by 3.

(b) 5 points Use induction to prove that for any integer n > 2, $4^n > n^4$.

- 9. This is another question on methods of proof.
 - (a) 5 points Show that among 1100 people, at least four must have the same birthday.

(b) 5 points Prove that for real numbers x and y, $|x-3|+|y+3| \ge |x+y|$.

10. Answer the following questions on relations.

Consider the relation R defined on set $A = \{-2, -1, 0, 1, 2\}$ where $(x, y) \in R$ if and only if $x = -y \pm 1$.

(a) 2 points Write all elements of R.

(b) 3 points Determine if R is reflexive, symmetric, antisymmetric and/or transitive.

(c) 3 points Write all elements of R^2 ?

(d) 2 points Give a relation on A that is symmetric and antisymmetric.

- 11. This is a question on growth of functions and complexity of algorithms

 The time complexity of Algorithms A and B are $\Theta(n^3)$ and $\Theta(4^n)$ respectively.
 - (a) 3 points Can it be said that on a problem with size n = 4 Algorithm B takes a longer time than A? Justify your answer.

(b) 3 points Now, consider two problems with sizes k and 2k respectively, where k is large. Can it be said that Algorithm A takes approximately eight times longer on the larger problem? Justify your answer.

(c) 4 points Show that $f(n) = 5n + 3\log(n!)$ is $O(n\log n)$.

- 12. This is a question on graphs theory.
 - (a) 3 points Is it possible to construct a graph such that it has 13 vertices all with degree 7? Justify your answer.

(b) 2 points The adjacency matrix of graph G (with vertices a,b,c in the same order) is A such that

$$A^5 = \begin{bmatrix} 4 & 2 & 4 \\ 2 & 12 & 7 \\ 4 & 7 & 6 \end{bmatrix}$$

How many paths of length 5 exists between vertices b and c?

(c) 2 points A connected bipartite graph has 7 verticies on one side (left side) and 5 degree two vertices on the other side (right side). What is the maximum possible degree on the left side?

(d) 3 points Let K_n be the complete graph with n vertices for $n \ge 1$. For what values of n, K_n is planar?