National Examinations - Dec 2016

98-Civ-B7, Highway Engineering

3 Hour Duration

NOTES

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
2. Any data, not given but required, can be assumed.
3. This is an "OPEN BOOK" examination. Any non-communicating calculator is permitted.
4. A total of five solutions is required. Only the first five as they appear in your answer book will be marked.
5. All questions are of equal value.
6. For non-numerical questions, clarity and organization of the answer are important.

Marking Scheme

1. 20 marks.
2. (a) 8 marks.
(b) 12 marks
3. 20 marks.
4. (a) 10 marks
(b) 10 marks
5. (a) 8 marks.
(b) 12 marks.
6. (a) 10 marks
(b) 10 marks.
7. 20 marks
8. A two-lane highway UAU80 of 7.5 m width and a cross-slope of $0.02 \mathrm{~m} / \mathrm{m}$. A point of intersection (PI) exists at station $50+000.000$ with a deflection angle of 20°. A horizontal circular curve with a radius of 800 m with an $\mathrm{e}_{\max }$ of 0.06 is chosen to connect the two tangents.
a. Check is the chosen radius is appropriate for this horizontal curve. If not, select an appropriate value
b. Determine the spiral parameter and length of the transition curve, and the superelevation
c. Using a horizontal scale of 1 to 500 and a vertical scale of $1: 5$, show the development of superelavation along the spiral and the circular curves with rotation around centerline.
d. Show and calculate the stations at the following points:

- Tangent to spiral
- Spiral to curve
- Curve to spiral
(the distance between stations is 1000 m)

2. a. The corner of a building is located next to a horizontal curve with a radius of 500 m measured to the centre of the inside lane. The inside lane is 3.30 m wide and the inside edge of the road is 3 m from the corner of the building. Calculate the required speed limit to maintain a safe stopping sight distance.
b. A vertical curve is to be designed to join a -2.0% and $+1.0 \%$ grade along a two-lane highway RCU80. Calculate the minimum length of the curve based on minimum required stopping sight distance (SSD). Assume the height of the head lamps to be 0.60 m and the angle of the light beam from the plane of the vehicle to be 1°.
3. Using the AASHTO method, design a flexible pavement section for a four-lane highway (two lanes in each direction) with a one-way average daily traffic (ADT) of 10000, truck volume of 6%, and an annual growth in traffic volume of 2% over the design period of 20 years. The pavement is to be constructed on a subgrade with modulus of resilience of 35 MPa (5000 psi). Assume a truck factor of 1.8 ESAL, a reliability of 95%, an overall standard deviation So of 0.49 , an initial serviceability of 4.5 , and a terminal serviceability of 2.6.

Use the attached AASHTO chart and return it with the answer booklet.
Draw a cross section showing the thickness of each layer of the pavement structure.
4. a. The bulk density of a compacted asphalt mixture was determined and found to be 2400 $\mathrm{kg} / \mathrm{m}^{3}$. Using the basic volumetric properties, calculate the air voids, VMA and VFB of this sample given the following:
Bulk relative density of the combined aggregate $=2.67$
Specific Gravity of the binder $=1.03$
Binder content $=5.5 \%$ ($\%$ of total mix, aggregates + binder $)$
Binder absorbed ($\%$ of combined aggregates) $=0.60 \%$
b. In a relative density test on a coarse aggregate sample, the following measurements were recorded:

SSD Mass: 2029 g

Submerged mass: 1272 g
Dry mass: 2016.1 g
Find the SSD relative density and the absorption
5. a. The following is a gradation of subgrade. Determine the D_{15} and D_{85} of a soil filter for this subgrade.

Sieve (mm)	\% Passing
4.75	98
2.36	93
1.18	85
0.60	65
0.30	35
0.15	15
0.075	10

b. A drainage layer of 200 mm thick, a cross slope of 4%, a porosity n_{e} of 25%, and a permeability k of $3.5 \mathrm{~cm} / \mathrm{s}$. Determine the steady state capacity of the drainage layer and the time for 50% and 95% drainage based on a drainage length of 6 m .
6. a. Specification for a highway requires that the soil be compacted to 95% of the modified laboratory dry density which was found to be $1960 \mathrm{~kg} / \mathrm{m}^{3}$ at an optimum moisture content of 11.0%. A field density test is carried out and the following results were obtained:

Total Density: $2080 \mathrm{~kg} / \mathrm{m}^{3}$
Water content: 13\%
Is compaction satisfactory? Should water be added? Or should the road be allowed to dry? Why?
b. List five types of distress that are used to evaluate conditions of asphalt pavements. Explain the reason(s) for each type of distress.
7. An asphalt overlay with a layer coefficient al of 0.44 is to be placed on an existing asphalt concrete pavement. The existing pavement has an AC surface of $40 \mathrm{~mm}(1.5 \mathrm{in})$ and a stabilized base of 150 mm (6 in). Assume the modulus of resilience of the soil to be 35 MPa (5000 psi). Condition survey was carried out on the existing pavement and showed the asphalt concrete layer to have $<5 \%$ medium- and high-severity transverse cracking, and the stabilized base to have $>10 \%$ high-severity alligator cracking.
a. Calculate the effective structural number of the pavement (state any assumptions you made or reference you used).
b. Calculate the required future structural number if the ESAL on the design lane is 100,000 , reliability $R=95 \%$, Overall standard deviation $S_{0}=0.45$, initial serviceability $=4.5$, and final serviceability $=2.5$ (use the attached AASHTO chart and submit it with the answer booklet).
c. Calculate the thickness of the overlay.

Figure 3.1. Design Chart for Flexible Pavements Based on Using Mean Values for Each Input

Figure 3.1. Design Chart for Flexible Pavements Based on Using Mean Values for Each Luput
Table B.3.1.4b
Superelevation and minimum spiral parameter, $e_{\text {max }}=0.06 \mathrm{~m} / \mathrm{m}$

