NATIONAL EXAMS May 2014 07-Elec-B2 Advanced Control Systems

3 hours duration

NOTES:

- 1. If a doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use one of two calculators, a Casio FX-991 or a Sharpe EL-540.
- 3. This is a closed-book examination. Tables of Laplace and z-transforms are attached as page 4 and page 5.
- 4. Any four questions constitute a complete paper. Only the first four questions as they appear in your answer book will be marked.
- 5. All questions are of equal value.

07-Elec-B2 Advanced Control Systems - May 2014

- 1. Consider the following system with $C(s) = \frac{sK_1 + K_2}{s}$ and $P(s) = \frac{1}{s(s+3)}$.
- (a) Let $K_2 = 0$. Find a value for K_1 , say $K_1 = K_1^0$, such that the overshoot at y(t) is 10% when there is a step change at r(t) with d(t) = 0.

- (b) Let $K_1 = K_1^0$. Find the maximum value of K_2 , say $K_2 = K_2^{\text{max}}$, for closed loop stability.
- (c) Let $K_2 = K_2^{\text{max}}/2$. Determine the steady state tracking error when r(t) is a ramp with slope 2 and d(t) = 0. Then determine the steady state value of the control input, u(t), when r(t) = 0 and d(t) = a unit step.
- 2. Consider the system, y(s) = G(s)u(s), $G(s) = \frac{\alpha s}{(1 + s)^2}$.
- (a) Find a state space model for the system taking y(t) as one of the state variables.
- (b) Justify the conditions under which the system is controllable and observable.
- (c) Let $\alpha = 1$. Design a state feedback controller such that the closed loop poles are -3, -2.
- 3. Consider the feedback system below with $P(s) = \frac{4(s+3)}{s^2 + 0.2s + 2}$.

- (a) Determine a feedback controller, C(s), such that the closed loop transfer function relating r to y is given by $\frac{32}{8s^2 + 6s + 32}$. Note: C(s) must be proper, i.e., the degree of the numerator must be greater than or equal to the degree of the numerator.
- (b) Determine the gain and phase margin of the feedback design.
- (c) Determine the steady state value of u when d is a unit step, r = 0, and n = 0.

07-Elec-B2 Advanced Control Systems - May 2014

4. Measurements of the frequency response for an unknown but stable first order system are recorded as follows,

Frequency	Gain	Phase Shift
0 rad/s	9.543 db	0
1 rad/s	5.563 db	-108.4 deg
2 rad/s	4.228 db	-139.4 deg

- (a) Determine the transfer function, P(s). Note: the transfer function of the system may have both numerator and denominator terms.
- (b) Draw the associated unit step response being careful to identify the key features.
- Justify whether the system is stable or not when a controller, C(s) = 1/s, is cascaded with P(s) in a negative (unity) feedback loop.
- 5. The discrete plant, $P(z) = \frac{z 1.5}{z(z 0.5)}$ is to be controlled with a proportional feedback controller.
- (a) Determine the range of the proportional gain for stability.
- (b) Sketch the root locus.
- (c) P(z) is obtained by uniform sampling of a continuous time plant, $P_c(s)$, that is driven by a zero order hold (or ideal digital to analog converter). Determine $P_c(s)$.
- 6. Consider the (continuous time) feedback system below with, C(s) = K, $P(s) = \frac{e^{-s/3}}{s}$.
- (a) Determine the range of *K* that results in closed loop stability.
- (b) Determine the phase margin when K = 1 and sketch the associated Nyquist plot.

(c) The system is stable and operating with disturbance, d(t) = 0.3, and set-point, r(t) = 1. Determine the tracking error, e(t) = r(t) - y(t), as a function of K.

Page 4 of 5

07-Elec-B2 Advanced Control Systems – May 2014

Inverse Laplace Transforms		
F(s)	f(t)	
$\frac{A}{s+\alpha}$	$Ae^{-\alpha t}$	
$\frac{C+jD}{s+\alpha+j\beta} + \frac{C-jD}{s+\alpha-j\beta}$	$2e^{-\alpha t}\left(C\cos\beta t + D\sin\beta t\right)$	
$\frac{A}{(s+\alpha)^{n+1}}$	$\frac{At^n e^{-\alpha t}}{n!}$	
$\frac{C+jD}{\left(s+\alpha+j\beta\right)^{n+1}} + \frac{C-jD}{\left(s+\alpha-j\beta\right)^{n+1}}$	$\frac{2t^n e^{-\alpha t}}{n!} \left(C\cos\beta t + D\sin\beta t \right)$	

Inverse z-Transforms		
F(z)	f(nT)	
$\frac{Kz}{z-a}$	Ka ⁿ	
$\frac{\left(C+jD\right)z}{z-re^{j\varphi}}+\frac{\left(C-jD\right)z}{z-re^{-j\varphi}}$	$2r^n\big(C\cos n\varphi - D\sin n\varphi\big)$	
$\frac{Kz}{(z-a)^r} , r=2,3$	$\frac{Kn(n-1)(n-r+2)}{(r-1)!a^{r-1}}a^{n}$	

07-Elec-B2 Advanced Control Systems - May 2014

Table of Laplace and z-Transforms (h denotes the sample period)			
f(t)	F(s)	F(z)	
unit impulse	1	1	
unit step	$\frac{1}{s}$	$\frac{z}{z-1}$	
e ^{-ca}	$\frac{1}{s+\alpha}$	$\frac{z}{z-e^{\alpha h}}$	
t	$\frac{1}{s^2}$	$\frac{hz}{\left(z-1\right)^2}$	
cos βt	$\frac{s}{s^2 + \beta^2}$	$\frac{z(z-\cos\beta h)}{z^2-2z\cos\beta h+1}$	
sin βt	$\frac{\beta}{s^2 + \beta^2}$	$\frac{z\sin\beta h}{z^2 - 2z\cos\beta h + 1}$	
$e^{-\alpha t}\cos \beta t$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\beta^2}$	$\frac{z(z-e^{-\alpha h}\cos\beta h)}{z^2-2ze^{-\alpha h}\cos\beta h+e^{-2\alpha h}}$	
$e^{-\alpha t} \sin \beta t$	$\frac{\beta}{\left(s+\alpha\right)^2+\beta^2}$	$\frac{ze^{-\alpha h}\sin\beta h}{z^2 - 2ze^{-\alpha h}\cos\beta h + e^{-2\alpha h}}$	
t f(t)	$-\frac{dF(s)}{ds}$	$-zh\frac{dF(z)}{dz}$	
$e^{-\alpha t}f(t)$	$F(s + \alpha)$	$F(ze^{\alpha h})$	