National Exams May 2016

07-Elec-B1, Digital Signal Processing

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- This is a Closed Book exam. Candidates may use one of two calculators, the Casio or Sharp approved models. They are also entitled to one aid sheet with tables & formulas written both sides. No textbook excerpts or examples solved.
- 3. FIVE (5) questions constitute a complete exam. Clearly indicate your choice of any five of the six questions given otherwise the first five answers found will be considered your pick.
- 4. All questions are worth 12 points. See below for a detailed breakdown of the marking.

Marking Scheme

- 1. total = 12
- 2. (a) 4, (b) 4, (c) 4, total = 12
- 3. (a) 3, (b) 3, (c) 3, (d) 3, total = 12
- 4. (a) 5, (b) 3, (c) 4, total = 12
- 5. total = 12
- 6. (a) 6, (b) 6, total = 12

The number beside each part above indicates the points that part is worth

- 1.- Let x[n] be a purely real sequence. You are given the following information about x[n] and must determine what it is. Even if you are unable to specify x[n] fully, you may receive partial credit by describing which features of x[n] are determined by each clue.
 - (a) x[-n] is a causal sequence.
 - (b) Let v[n] = x[n-3]. The discrete-time Fourier transform $V(e^{j\omega})$ is purely imaginary.

(c)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega = 28$$
.

(d) $\lim_{z \to 0} X(z) = -1$.

(e)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{-j\omega} d\omega = 2.$$

(f)
$$x[-2] > 0$$
.

Note: Consult tables and formulas provided at the end of this exam as needed

2.- The figure shows a continuous-time filter that is implemented using an LTI discretetime ideal lowpass filter with frequency response over $-\pi \le \omega \le \pi$ given by

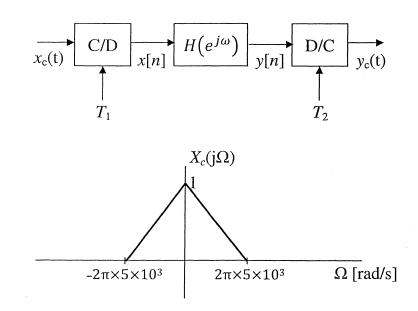
$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi. \end{cases}$$

If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in the figure and $\omega_c = \pi/5$, sketch and label the Fourier transforms of x[n], y[n] and $y_c(t)$, this is $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$, for each of the following cases:

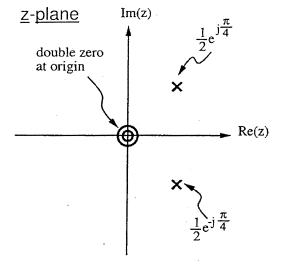
(a) $1/T_1 = 1/T_2 = 2 \times 10^4 \ s^{-1}$

(b)
$$1/T_1 = 4 \times 10^4 \ s^{-1}, 1/T_2 = 10^4 \ s^{-1}$$

(c) $1/T_1 = 10^4 s^{-1}, 1/T_2 = 3 \times 10^4 s^{-1}$



- 3.- A causal and stable LTI system has system function H(z). The pole-zero plot for H(z) is shown in the figure below.
 - (a) What is the region of convergence (ROC) for H(z)? Justify answer.
 - (b) Is the system impulse response h[n] real? Justify your answer.
 - (c) What is the pole-zero plot for the z-transform of $\left(\frac{1}{2}\right)^n h[n]$?
 - (d) What is the pole-zero plot for the z-transform of $\left(\frac{j}{2}\right)^n h[n]$?



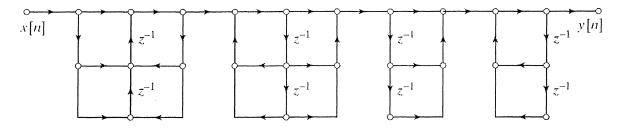
Pole-zero plot for H(z)

Additional information (not necessarily required): H(1) = $\frac{4}{5-2\sqrt{2}}$.

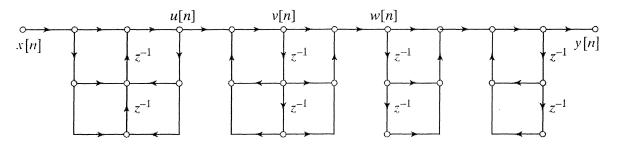
4.- An LTI system with system function

$$H(z) = \frac{0.2(1+z^{-1})^6}{\left(1-2z^{-1}+\frac{7}{8}z^{-2}\right)\left(1+z^{-1}+\frac{1}{2}z^{-2}\right)\left(1-\frac{1}{2}z^{-1}+z^{-2}\right)}$$

is to be implemented using a flow graph of the form shown in the figure below



- (a) Fill in all the coefficients in the diagram above. Is your solution unique? Explain
- (b) Identify the structure for each section in cascade displayed in the flow graph.
- (c) Using the coefficient assignment you established in part (a), for the node variables defined below u[n], v[n], w[n] and output y[n], write the set of difference equations that is represented by the flow graph.



- 5.- It is suggested that if you have a fast Fourier transform (FFT) subroutine for computing an N-point discrete Fourier transform (DFT), the inverse N-point DFT of a sequence X[k] can be computed using this subroutine as follows:
 - 1. Swap the real and imaginary parts of each DFT value X[k].
 - 2. Apply the FFT subroutine to this input sequence.
 - 3. Swap the real and imaginary parts of the output sequence.
 - 4. Scale the resulting sequence by 1/N to obtain the sequence x[n], corresponding to the inverse DFT of X[k].

Determine whether this procedure works as claimed. If it does show why, if it doesn't propose a simple modification that will make it work.

Hint: Swapping of real & imaginary parts of a complex number A can be achieved through: $(-jA)^*$, where (.)* the star operator stands for complex conjugate

6.- The Kaiser window method is used for designing a highpass filter with cutoff frequency $\omega_c = 0.6\pi \ rad/sample$. From the Kaiser formulas seen below values of $\beta = 3.86$ and M = 51 are found to satisfy the filter specifications except in the neighborhood of π where the error rapidly increases well beyond the specified tolerance.

$$\beta = \begin{cases} 0.1102(A - 8.7), & A > 50, \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50, \\ 0.0, & A < 21. \end{cases}$$

where $A = -20\log_{10} \delta$, and

$$M = \frac{A - 8}{2.285 \Delta \omega}$$

where $\Delta \omega$ is the transition band width in the design specifications.

(a) Provide the filter specifications, including the values of the tolerance δ , the stopband corner frequency ω_s and the passband corner frequency ω_p .

(b) What else is required in order to obtain a final design that satisfies the filter specifications for all values of ω ? Explain.

 TABLE 7.2
 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hann	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Additional Information

(Not all of this information is necessarily required today!)

DTFT Synthesis Equation	DTFT Analysis Equation
$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
Parseval's Theorem	DFT Exponential Factor
$E = \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	$W_N = e^{-j(2\pi/N)}$
Z-transform of a sequence $x[n]$ $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$	Z-transform Properties $x[-n] \stackrel{Z}{\leftrightarrow} X(1/z), ROC = \frac{1}{R_x}$ $z_o^n x[n] \stackrel{Z}{\leftrightarrow} X(z/z_o), ROC = z_o R_x$

Property Number	Section Reference	Sequence	Transform	ROC
rumoer	Reference	x[n]	$\frac{X(z)}{X(z)}$	R_x
		$x_1[n]$	$X_1(z)$	R_{x_1}
	,	$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$\frac{-z\frac{dX(z)}{z}}{X^{*}(z^{*})}$	R_x
5	3.4.5	$x^*[n]$	$X^*(z^*)$	R_{χ}
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2j}[X(z) - X^*(z^*)]$	Contains R_x
8	3.4.6	$x^*[-n]$	$\frac{2J}{X^*(1/z^*)}$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

	Finite-Length Sequence (Length N)	N-point DFT (Length N)			
1.	x[n]	X[k]			
2.	$x_1[n], x_2[n]$	$X_1[k], X_2[k]$			
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$			
4.	X[n]	$Nx[((-k))_N]$			
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$			
6.	$W_N^{-\ell n} x[n]$	$X[((k-\ell))_N]$			
7.	$\sum_{m=0}^{N-1} x_1(m) x_2[((n-m))_N]$	$X_1[k]X_2[k]$			
8.	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1(\ell) X_2[((k-\ell))_N]$			
9.	$x^*[n]$	$X^*[((-k))_N]$			
10.	$x^*[((-n))_N]$	$X^*[k]$			
11.	$\mathcal{R}e\{x[n]\}$	$X_{\rm ep}[k] = \frac{1}{2} \{ X[((k))_N] + X^*[((-k))_N] \}$			
12.	$j\mathcal{J}m\{x[n]\}$	$X_{\rm op}[k] = \frac{1}{2} \{ X[((k))_N] - X^*[((-k))_N] \}$			
13.	$x_{\rm ep}[n] = \frac{1}{2} \{ x[n] + x^* [((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$			
14.	$x_{\rm op}[n] = \frac{1}{2} \{ x[n] - x^*[((-n))_N] \}$	$j\mathcal{J}m\{X[k]\}$			
Proj	perties 15–17 apply only when $x[n]$ is real.				
15.	Symmetry properties	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{J}m\{X[k]\} = -\mathcal{J}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ \triangleleft\{X[k]\} = -\triangleleft\{X[((-k))_N]\} \end{cases}$			
16.	$x_{\rm ep}[n] = \frac{1}{2} \{ x[n] + x[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$			
17.	$x_{\rm op}[n] = \frac{1}{2} \{ x[n] - x[((-n))_N] \}$	$j \mathcal{J}m\{X[k]\}$			

Properties of the Discrete Fourier Transform

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^{n}u[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	<i>z</i> > 0

TABLE 3.1SOME COMMON *z*-TRANSFORM PAIRS

Initial Value Theorem:

If x[n] is a causal sequence, *i.e.* x[n] = 0, $\forall n < 0$, then

$$x[0] = \lim_{z \to \infty} X(z)$$