National Exams May 2014

10-Met-A1, Metallurgical Thermodynamics

3 hours duration

NOTES:

- 1. Answer only **five** questions. Any five questions (out of seven) constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 2. All questions are of equal value (20 marks each out of 100).
- 3. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
- 4. Candidates may use one of two calculators, the Casio or Sharp approved models. This is a closed book exam.
- 5. The exam consists of 4 pages including Ellingham diagram.

Question 1: (a) 8, (b) 8, (c) 4

Question 2: (a) 10, (b) 10

Question 3: (a) (i) 4, (ii) 4, (iii) 2, (b) (i) 4, (ii) 4, (iii) 2

Question 4: (a) 4, (b) 4, (c) 4, (d) 4, (e) 4

Question 5: (a) 5, (b) 5, (c) 5, (d) 5

Question 6: (a) 8, (b) 8, (c) 4

Question 7: (a) 4, (b) 4, (c) 4, (d) 4, (e) 4

Problem No. 1 (20 marks):

- (a) 1 mol of an ideal gas at 300 K and 10⁵ Pa is expanded isothermally against a constant pressure of 10⁴ Pa till its volume doubles. Calculate q, w, ΔH and ΔU for the process. (8 marks)
- (b) At the end of the process in Part (a), the gas is cooled at constant volume from 300 K to 250 K.Calculate q, w, ΔH and ΔU for the process.(8 marks)
- (c) Calculate q, w, ΔH and ΔU for the complete process in Parts (a) and (b). (4 marks)

Problem No. 2 (20 marks):

Assume that $(\partial U/\partial V)_T = 0$ and $(\partial H/\partial P)_T = 0$ for an ideal gas.

- (a) Prove that C_v is independent of volume at constant temperature.
- (b) Prove that C_p is independent of pressure at constant temperature. (10 marks)

(10 marks)

Problem No. 3 (20 marks):

- (a) I mol of an ideal gas at 300 K is reversibly and isothermally compressed from 20 L to 10 L.
 - (i) Calculate the change in the entropy of the system. (4 marks)
 - (ii) Calculate the change in the entropy of the surroundings. (4 marks)
 - (iii) Calculate the total change in the entropy of the system and surroundings. (2 marks)
- (b) I mol of an ideal gas at 300 K is isothermally compressed by a constant external pressure of 200,000 Pa from 20 L to 10 L.
 - (i) Calculate the change in the entropy of the system. (4 marks)
 - (ii) Calculate the change in the entropy of the surroundings. (4 marks)
 - (iii) Calculate the total change in the entropy of the system and surroundings. (2 marks)

Problem No. 4 (20 marks):

Given the following data for standard enthalpy of formation at 25 °C:

Compound	Standard enthalpy of formation
C_2H_6	-85 kJ/mol
C ₂ H ₅ OH	-277 kJ/mol
C_3H_8	-105 kJ/mol
C_4H_{10}	-126 kJ/mol
CO_2	-394 kJ/mol
H ₂ O	-286 kJ/mol

(a) Calculate the heat of combustion per mole of C ₂ H ₆ .	(4 marks)
(b) Calculate the heat of combustion per mole of C ₂ H ₅ OH.	(4 marks)
(c) Calculate the heat of combustion per mole of C ₃ H ₈ .	(4 marks)
(d) Calculate the heat of combustion per mole of C ₄ H ₁₀ .	(4 marks)
(e) Which fuel generates highest amount of heat per unit weight of the fuel.	(4 marks)

10-Met-A1, May 2014

Problem No. 5 (20 marks):

One mole of NO₂ gas is placed in a sealed container at 10⁵ Pa and allowed to come to equilibrium according to the following reaction:

$$NO_2(g) = NO(g) + \frac{1}{2}O_2(g)$$
 (1)

After attaining equilibrium, the resulting gas mixture is analyzed to give the following results:

T	P_{NO}/P_{NO2}
500 K	0.6
1000 K	3.6

(a) Calculate the equilibrium constant at 500 K.

(5 marks)

(b) Calculate the equilibrium constant at 1000 K.

(5 marks)

(c) Assuming ΔH^o for the reaction is independent of temperature, find ΔH^o for the reaction.

(5 marks)

(d) Calculate ΔG° for the reaction at 300 K.

(5 marks)

Problem No. 6(20 marks):

Calculate the ΔG of mixing at 298 K and 1 atm pressure for the following cases:

(a) Mixing of 1 mole of O_2 and 1 mole of N_2 .

(8 marks)

(b) Mixing of 1 mole of O_2 and 2 mole of N_2 .

(8 marks)

(c) Mixing of 1 mole of O_2 to a mixture of 1 mole of O_2 and 1 mole of N_2 .

(4 marks)

Problem No. 7 (20 marks): Use the attached Ellingham Diagram to answer the following questions:

What is the partial pressure of oxygen in equilibrium with Ti and TiO₂ at 1500 °C?

- What is the ratio of partial pressures of CO to CO₂ for equilibrium of Ti and TiO₂ in a CO-CO2 atmosphere at 1000 °C?
- What is the ratio of partial pressures of H₂ to H₂O for equilibrium of Ti and TiO₂ in a H₂-H₂O atmosphere at 1000 °C? (4 marks)
- What is ΔG° (kJ/mol) at 1000 °C for the reaction: Ti + SiO₂ = TiO₂ + Si? (4 marks)
- Explain why there is no discontinuity in the Ellingham diagram at points where phase transformations take place? (4 marks)

Figure 9-3. Ellingham diagram for some oxides; Richardson nomographic scales are included. (Adapted from D. R. Gaskell, *Introduction to Metallurgical Thermodynamics*, 2nd ed., Hemisphere Publishing, New York, 1981.)