National Exam May, 2017

16-Elec-A1 Circuits

3 hours duration

NOTES:

- 1. **No questions to be asked**. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- 2. Candidates may use one of two calculators, a Casio or Sharp. **No programmable models** are allowed.
- 3. This is a **closed book** examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please <u>indicate</u> in the front page of your <u>answer book which questions you want to be marked.</u> <u>If not indicated, only the first five questions as they appear in your answer book will be marked.</u>
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. Some useful equations and transforms are given in the last page of this question paper.

Q1:(a) In the circuit shown in Figure-1, calculate the equivalent resistance at terminals a-b, Rab. [10]

(b) Calculate the current, Is shown in the circuit.

[4]

(c) Calculate the current, I1 in the 20Ω resistance.

[6]

Figure-1

Q2: (a) Write the mesh current equations of the circuit shown in Figure-2.

[8]

(b) Solve the mesh currents.

[8]

(c) What is the power dissipation in the 6Ω resistance?

[4]

Figure-2

Q3: For the Circuit shown in Figure-3, the switch was initially open for a long time.

At t=0, the switch is closed.

Figure-3

 $\mbox{\bf Q4:(a)}$ In the circuit shown in Figure-4 , calculate $i_s(t)$ and $v_c(t)$

[6+6]

(b) Show the phasor diagram of $\overline{V_S}$, $\overline{I_S}$ and $\overline{V_C}$.

[8]

Figure-4

Q5: (a) Calculate the Thevenin's Voltage, V_{th} and Thevenin's impedance, Z_{th} at the terminals **a-b** of the circuit shown in Figure-5. [8+4]

(b) What value of load impedance Z_L which can be connected at terminals **a-b** for maximum power dissipation in Z_{L?}

(c) Calculate the maximum power, P_{max} which can be dissipated in Z_L . [6]

Figure-5

Q6: In the circuit shown in Figure-6, input voltage 15u(t) is an unit step function i.e.

15u(t) = 15 V at $t \ge 0$, and equal to 0 at t < 0.

(a) Convert the circuit its Laplace equivalent, if $i_L(0^-) = 0.5A$ and $V_c(0^-) = 4V$.

[8]

(b) Solve the output voltage $v_c(t)$ in the time domain, at $t \ge 0$.

[12]

Figure-6

<u>Appendix</u>

Some useful Laplace Transforms:

<u>f(t)</u>	\rightarrow	<u>F(s)</u>
Ku(t)		K/s
$\partial(t)$		1
t		$1/s^2$
e ^{-at} u(t)		1 / (s+a)
sin wt .u(t)		$w / (s^2 + w^2)$
cos wt . u(t)		$s / (s^2 + w^2)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}cos \omega t$		$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$		$s F(s) - f(0^-)$
$\frac{d^2 f(t)}{dt^2}$		$s^2F(s) - s f(0^-) - f^1(0^-)$
$\int_{-\infty}^{\iota} f(q) dq$		$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

Star - Delta conversion:

$$Z_{1} = \frac{Z_{b}.Z_{c}}{Z_{a} + Z_{b} + Z_{c}} \qquad \qquad Z_{2} = \frac{Z_{a}.Z_{c}}{Z_{a} + Z_{b} + Z_{c}} \qquad \qquad Z_{3} = \frac{Z_{a}.Z_{b}}{Z_{a} + Z_{b} + Z_{c}}$$

$$Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a, Z_b}{Z_a + Z_b + Z_c}$$

$$Z_a = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_1} \qquad Z_b = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_2} \qquad Z_c = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_3}$$

$$Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2}$$

$$Z_c = \frac{Z_1, Z_2 + Z_2, Z_3 + Z_3, Z_1}{Z_3}$$