National Exams

07-Elec-B1, Digital Signal Processing

December 2013

3 Hours Duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Approved calculator is permitted. This is a CLOSED BOOK EXAM, but one aid sheet is allowed written on both sides.
- 3. There are five questions, however, FOUR(4) questions constitute a complete paper. The first four questions as they appear in the answer book will be marked.
- 4. All questions are of equal value.
- 5. Clarity and organization of the answer are important.

(Page 1 of 6)

1. (25 marks total) Consider an LTI system defined by the difference equation

$$y[n] = -x[n] + 2x[n-1] - x[n-2].$$

- (a) (5 marks) Determine the impulse response of the system.
- (b) (7 marks) Determine the frequency response of this system. Express your answer in the form

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega n_d},$$

where $A(e^{j\omega})$ is a real function of ω . Explicitly specify $A(e^{j\omega})$ and the delay n_d of this system.

- (c) (8 marks) Sketch a plot of the magnitude $|H(e^{j\omega})|$ and a plot of phase $\angle H(e^{j\omega})$.
- (d) (5 marks) Suppose that the input to the system is

$$x_1[n] = 1 + e^{j0.5\pi n} \qquad -\infty < n < \infty$$

Use the frequency response function to determine the corresponding output $y_1[n]$.

2. (25 marks total) Consider the three sequences

$$v[n] = u[n] - u[n-6],$$
 $w[n] = \delta[n-2] + 2\delta[n-4] + \delta[n-6],$ $p[n] = v[n] * w[n].$

- (a) (10 marks) Find and sketch the sequence p[n].
- (b) (10 marks) Find and sketch the sequence r[n] such that $r[n]*v[n] = \sum_{k=-\infty}^{n-1} p[k]$.
- (c) (5 marks) Is p[-n] = v[-n] * w[-n]? Justify your answer.

3. (25 marks total) A causal LTI system has system function

$$H(z) = \frac{1 - z^{-1}}{(1 - 0.6z^{-1})(1 + 0.6z^{-1})}$$

- (a) (9 marks) Determine the output of the system when the input is x[n] = u[n].
- (b) (8 marks) Determine the input x[n] so that the corresponding output of the above system is $y[n] = \delta[n] \delta[n-1]$.
- (c) (8 marks) Determine the output y[n] when the input is $x[n] = \cos(\frac{\pi}{3}n)$ for $-\infty < n < \infty$. You may leave your answer in any convenient form.

- 4. (25 marks total) Figure 1. shows a continuous-time filter that is implemented using an LTI discrete-time filter with frequency response $H(e^{j\omega})$ as depicted in Figure 2. Note that Ω denotes continuous-time frequency and ω denotes discrete-time frequency. If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Figure 3, with $\Omega = \pi \times 10^5$ and $\omega_c = \frac{\pi}{5}$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$ for each of the following cases.
 - (a) (9 marks) $\frac{1}{T_1} = \frac{1}{T_2} = 2 \times 10^5$
 - (b) (8 marks) $\frac{1}{T_1} = 4 \times 10^5, \frac{1}{T_2} = 10^5$
 - (c) (8 marks) $\frac{1}{T_1} = 10^5, \frac{1}{T_2} = 3 \times 10^5$

Figure 1:

Figure 2:

Figure 3:

- 5. (25 marks total) Consider the real finite-length sequence x[n] shown in Figure 4.
 - (a) (8 marks) Sketch the finite-length sequence y[n] whose six-point DFT is

$$Y[k] = W_6^{5k} X[k]$$

where X[k] is the six-point DFT of x[n].

(b) (7 marks) Sketch the finite-length sequence w[n] whose six-point DFT is

$$W[k] = Im\{X[k]\}$$

(note: Im stands for the imaginary part)

(c) (10 marks) Sketch the finite-length sequence q[n] whose three-point DFT is

$$Q[k] = X[2k+1],$$
 $k = 0, 1, 2.$

Figure 4: