National Exams May 2019

16-Elec-B1, Digital Signal Processing

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- This is a Closed Book exam.
 Candidates may use one of two calculators, the Casio or Sharp
 approved models. They are also entitled to one aid sheet with tables &
 formulas written both sides. No textbook excerpts or examples solved.
- 3. FIVE (5) questions constitute a complete exam.

 Clearly indicate your choice of any five of the six questions given otherwise the first five answers found will be considered your pick.
- 4. All questions are worth 12 points. See below for a detailed breakdown of the marking.

Marking Scheme

- 1. (a) 6, (b) 6, total = 12
- 2. (a) 6, (b) 6, total = 12
- 3. (a) 6, (b) 6, total = 12
- 4. (a) 7, (b) 5, total = 12
- 5. (a) 3, (b) 2, (c) 2, (d) 3, (e) 2, total = 12
- 6. (a) 5, (b) 3, (c) 4, total = 12

The number beside each part above indicates the points that part is worth

1.- Consider the system in the figure below.

The input signal $x_c(t)$ has the Fourier transform shown in the figure below with $\Omega_0 = 2\pi(1000)$ rad/s. The discrete-time system is an ideal lowpass filter with frequency response

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| < \omega_c, \\ 0, & otherwise. \end{cases}$$

- (a) What is the minimum sampling rate $F_s = 1/T$ such that no aliasing occurs in sampling the input?
- (b) If $\omega_c = \pi/2$, what is the minimum sampling rate such that $y_r(t) = x_c(t)$?

2.- The figure below shows two periodic sequences, $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$, with period N=7.

(a) Find a sequence $\tilde{y}_1[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_1[n]$ and the DFS of $\tilde{x}_2[n]$, i.e.,

$$\tilde{Y}_1[k] = \tilde{X}_1[k] \, \tilde{X}_2[k].$$

(b) The figure below shows a periodic sequence $\tilde{x}_3[n]$ with period N=7.

Find a sequence $\tilde{y}_2[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_1[n]$ and the DFS of $\tilde{x}_3[n]$, i.e.,

$$\tilde{Y}_2[k] = \tilde{X}_1[k] \, \tilde{X}_3[k].$$

- 3.- Suppose you have a signal x[n] with 498 nonzero samples whose discrete-time Fourier transform you wish to estimate by computing the DFT. You find that it takes your computer 1 second to compute the 498-point DFT of x[n]. You then add fourteen zero-valued samples at the end of the sequence x[n] to form a 512-point sequence x[n]. Now the computation of $X_1[k]$ takes your computer just 9.29 milliseconds. Reflecting, you realize that by using $x_1[n]$, you are able to compute more samples of $X(e^{j\omega})$ in a much shorter time by adding some zeros to the end of x[n] and using this slightly longer sequence.
 - (a) How do you explain this apparent paradox?
 - (b) Justify the difference in computational time numerically.
- 4.- (a) A discrete-time LTI system has system function given by

$$H(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

and impulse response given by

$$h[n] = A_1 \propto_1^n u[n] + A_2 \propto_2^n u[n].$$

- (i) Determine the values of A_1, A_2, \propto_1 and \propto_2 .
- (ii) Is this system stable? Justify your answer.
- (b) If the system function is given by

$$H(z) = \frac{1 - \frac{1}{1024}z^{-10}}{1 - \frac{1}{2}z^{-1}}, \text{ for } |z| > 0.$$

Is the corresponding LTI system causal? Justify your answer.

5.- Consider a causal LTI system whose system function is

$$H(z) = \frac{1 - \frac{3}{10}z^{-1} + \frac{1}{3}z^{-2}}{\left(1 - \frac{4}{5}z^{-1} + \frac{2}{3}z^{-2}\right)\left(1 + \frac{1}{5}z^{-1}\right)}$$

Draw the signal flow graphs for implementations of the system in each of the following forms:

- (a) Direct Form I
- (b) Direct Form II
- (c) Cascade Form using 1st and 2nd-order direct form II sections
- (d) Parallel Form using 1st and 2nd-order direct form I sections
- (e) Transposed Direct Form II

6.- We wish to use the Kaiser window method to design a discrete-time filter with linear phase that meets the following specifications:

$$|H(e^{j\omega})| \le 0.01, \quad 0 \le |\omega| \le 0.25\pi,$$

 $0.95 \le |H(e^{j\omega})| \le 1.05, \quad 0.35\pi \le |\omega| \le 0.6\pi,$
 $|H(e^{j\omega})| \le 0.01, \quad 0.65\pi \le |\omega| \le \pi.$

- (a) Determine the minimum length (M + 1) of the impulse response and the value of the Kaiser window parameter β for a filter that meets the preceding specification
- (b) What is the delay introduced by the filter?
- (c) Determine the ideal impulse response $h_d[n]$ to which the Kaiser window should be applied.

Formulas for Kaiser window parameters:

$$\beta = \begin{cases} 0.1102(A-8.7), & A > 50, \\ 0.5842(A-21)^{0.4} + 0.07886(A-21), & 21 \leq A \leq 50, & where \ A = -20\log_{10}\delta, \\ 0.0, & A < 21. \end{cases}$$

$$M = \frac{A-8}{2.285\Delta\omega} \quad where \ \Delta\omega \ is \ the \ transition \ band \ width \ in \ the \ design \ specifications.$$

Additional Information

(Not all of this information is necessarily required today!)

DTFT Synthesis Equation $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	DTFT Analysis Equation $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
Parseval's Theorem $E = \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	N-point DFT $X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, W_N = e^{-j\frac{2\pi}{N}}$
Z-transform of a sequence $x[n]$ $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	Sinusoidal response of LTI systems, real h[n] $y[n] = \left H(e^{j\omega_0}) \right \cos \left(\omega_0 n + \sphericalangle H(e^{j\omega_0}) \right)$

SOME z-TRANSFORM PROPERTIES

Property Number	Section Reference	Sequence	Transform	ROC
		x[n]	X(z)	R_{X}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0''x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$-z\frac{dX(z)}{dz}$ $X^*(z^*)$	R_{x}
5	3.4.5	$x^*[n]$	$X^*(z^*)^{z}$	R_{x}
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_x
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
8	3.4.6	$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{v_1} \cap R_{v_2}$

Additional Information (cont'd)

Geometric Sum	Geometric Series
$\sum_{k=0}^{N-1} q^k = \frac{1 - q^N}{1 - q}$	$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}, q < 1$

Properties of the Discrete Fourier Transform

	Finite-Length Sequence (Length N)	N-point DFT (Length N)
1.	x[n]	X[k]
2.	$x_1[n], x_2[n]$	$X_1[k], X_2[k]$
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4.	X[n]	$Nx[((-k))_N]$
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$
6.	$W_N^{-\ell n}x[n]$	$X[((k-\ell))_N]$
7.	$\sum_{m=0}^{N-1} x_1(m) x_2[((n-m))_N]$	$X_1[k]X_2[k]$
8.	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1(\ell) X_2[((k-\ell))_N]$
9.	$x^*[n]$	$X^*[((-k))_N]$
10.	$x^*[((-n))_N]$	$X^*[k]$
11.	$\mathcal{R}e\{x[n]\}$	$X_{\text{ep}}[k] = \frac{1}{2} \{ X[((k))_N] + X^*[((-k))_N] \}$
12.	$j\mathcal{J}m\{x[n]\}$	$X_{\rm op}[k] = \frac{1}{2} \{ X[((k))_N] - X^*[((-k))_N] \}$
13.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x^*[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x^*[((-n))_N]\}$	$j\mathcal{J}m\{X[k]\}$
	perties 15–17 apply only when $x[n]$ is real.	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}_{\ell}\{X[k]\} = \mathcal{R}_{\ell}\{X[((-k))_N]\} \end{cases}$
15.	Symmetry properties	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{I}m\{X[k]\} = -\mathcal{I}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ < \{X[k]\} = -< \{X[((-k))_N]\} \end{cases}$
16.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
	$x_{\text{op}}[n] = \frac{1}{2} \{ x[n] - x[((-n))_N] \}$	$j\mathcal{J}m\{X[k]\}$

SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. δ[n]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0

Initial Value Theorem:

If x[n] is a causal sequence, *i.e.* x[n] = 0, $\forall n < 0$, then

$$x[0] = \lim_{z \to \infty} X(z)$$