National Exams May 2013

04-Chem-A6, Process Dynamics & Control

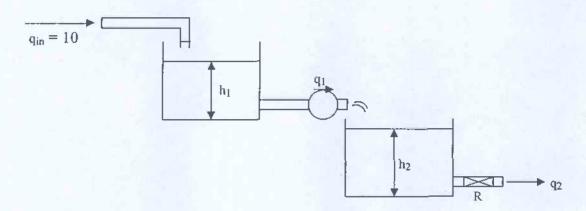
3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM. Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper. The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. Most questions require an answer in essay format. Clarity and organization of the answer are important.

Problem #1 (20% total)

Two tanks are connected in series in a non-interacting fashion as shown in the figure.



Assume:
$$\rho = 1 \text{ Kg/m}^3$$
 $A = 1 \text{ m}^2(\text{A-cross-section of each tank})$
 $q_2 = \frac{1}{2} \sqrt{\frac{\Delta P}{\rho g}} \text{ (m}^3\text{/sec) and } q_1 \text{ is determined by a pump.}$

 $q_{in} = 10 \text{ m}^3$ /sec and remains constant. The initial level in tank 1 is $h_1(t=0) = 10 \text{ m}$. q_1 is the manipulated variable. All q's are volumetric flow rates.

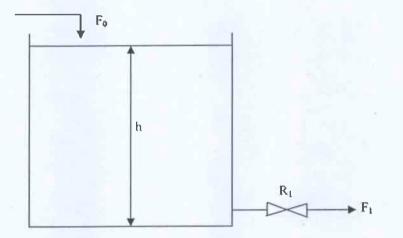
(10%)

(a)

- Show the differential equations that describe the behaviour of $h_1(t)$ and $h_2(t)$.
- (10%) (b) Compute transfer functions between h_1 to q_{in} and h_2 to q_{in} .

Problem #2 (20% total)

For the draining tank shown in the figure



Compute the level h(t) with respect to an initial steady state for the following two cases:

- (10%) (a) a unit step in inlet flow F_0
- (10%)

(b) a square unit pulse in inlet flow F_0 of duration t_p starting from t=0.

The cross section area is $1m^2$. The initial level is 7m.

The flow out is given by $F_1 = R_1 \cdot h$, where the coefficient $R_1 = 4 \frac{m^2}{min}$, $\tau_p = 5 min$.

Problem #3 (20% total)

A process is described by the following transfer function:

$$G_p = \frac{5(s-1)e^{-3s}}{100s+1}$$

- (10%) (a) Design an IMC controller for this process. Show your design using a block diagram. Select the IMC filter to be of 1^{st} order with a time constant $\tau = 10$. Do not use Pade approximation.
- (10%) (b) Compute and plot qualitatively the closed loop response of the system to a unit step in set point. Assume a perfect model (i.e. no model error).

Problem #4 (20% total)

A process given by:

$$G_{p} = \frac{100}{s - 10}$$

is controlled by a proportional controller with gain k_c.

- (10%) (a) Using the Nyquist theorem test the closed loop stability for $k_c = 1$ and $k_c = 0.1$.
- (10%) (b) Using the Nyquist criterion, compute the limiting value of k_c for which the system is stable.

Problem #5: (20% total)

A first order process is given by

$$G_p(s) = \frac{1}{s+5}$$

This process is controlled by a proportional-derivative (PD) controller given by:

$$G_c(s) = k_c(1 + \frac{1}{s})$$

- (10%) (a) Compute values of the k_c that will result in closed loop stability. Use the Routh stability test. Assume for value and sensor transfer functions $G_V = G_m = 1$
- (10%)
 (b)For a controller gain k_c=1 compute the closed loop time response for a unit step change in setpoint .

Problem #6: (20% total)

A process given by

$$G_p(s) = \frac{e^{-\frac{3\pi}{4}s}}{s+1}$$

is controlled by a proportional controller with proportional gain K_c .

- (10%) (a) Without using any approximations, test stability for $K_c=1$. What is the critical frequency?
- (10%) (b) What is the gain margin for $K_c=1$?

Problem #7 (20% total)

For the process modelled by:

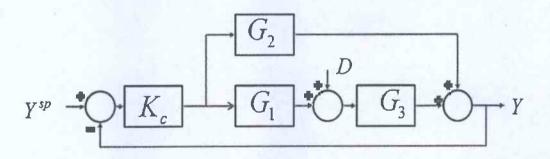
$$\frac{dy_1}{dt} = -y_1 - y_2 + x_1$$
$$\frac{dy_2}{dt} = y_1 - 2y_2 + x_1 + x_2$$

(10%)

(a)

- Find the two transfer functions relating the inputs x_1 and x_2 to the output y_2 . The x's and y's are deviation variables.
- (10%) (b) Compute y_2 as a function of time for $x_1 = 0$ and a unit step in x_2 .

Problem #8 (20% total)



For the block diagram in the figure:

$$G_1 = 10$$
 $G_2 = \frac{2}{3s+1}$ $G_3 = \frac{1}{s-1}$

is controlled by a proportional controller with gain k_c.

(10%) (a) Find the closed loop transfer function Y(s)/D(s). What is the characteristic equation of the system (to be used for testing stability)?

(10%) (b) Find the values of K_c for which the closed loop is stable.