National Exams

07-Elec-A5, Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**. Any non-communicating calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

Elec-A5, Electronics

QUESTION (1)

In the following circuit, the input voltage v_{IN} is a 1 kHz, ± 10 V triangular source. Provide an accurate sketch of the voltage waveforms v_1 and v_2 as a function of time. The diode D_1 is ideal with a 0.7V forward drop. (20 points)

Given:

 $R_1 = 1 k\Omega$ $R_2 = 3 k\Omega$ $R_3 = 3 k\Omega$ $R_4 = 1 k\Omega$ $R_5 = 10 k\Omega$

QUESTION (2)

The op amp in this circuit is ideal except for a slew rate limit of $0.5V/\mu s$. It is powered by $\pm 15V$ supplies. Given that

 $R_1 = 10 \mathrm{k}\Omega$

For D_1 , $V_Z = 5V$, forward voltage drop = 0.7V

Sketch **accurately** in your answer book the voltage waveform for *vo*. You must indicate the breakpoints, including accurate timing and voltage levels. (20 points) Elec-A5, Electronics

QUESTION (3) a) Derive an expression for the output v_{01} and v_{02} as a function of R_1 , R_2 , R_3 , and v_{01} in the following op amp circuit. (14 points)

b) Provide a possible set of values for R_1 , R_2 , R_3 , such that $|v_{02}/v_{11}|$ has a gain of 20 V/V. (6 points)

QUESTION (4)

Transistor M_1 in this common gate amplifier circuit has the following characteristics:

$$V_{TH} = 1 \text{ V}$$

 $K = 1 \text{ mA/V}^2$ $\lambda = 0.1$

Given:
$$V_{DD} = 10$$
 V, $I_{bias} = 1$ mA,
 $C_1 = C_2 = \infty$,
 $R_1 = 10$ k Ω , $R_2 = 5$ k Ω , $R_D = 5$ k Ω

a) Determine the small signal gain, *v*_o/*v*_{in}.

- b) Determine the input resistance, R_{in} . (4 points)
- c) Determine the output resistance, R_o . (4 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
triode region
$$i_{DS} = \frac{1}{2} K \left(v_{GS} - V_{TH} \right)^{2} \left(1 + \lambda v_{DS} \right)$$
saturation region

(12 points)

Elec-A5, Electronics

- a) Design this common collector amplifier circuit to have DC bias current, $I_E = 2\text{mA}$. Provide values for R_E and R_C . (5 points)
- b) What is the equivalent output resistance, R_0 ? (10 points)
- c) What is the maximum undistorted peak to peak output voltage swing at the output? (5 points)