National Exams December 2017

16-Elec-B5, Advanced Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- This is a CLOSED BOOK EXAM.
 Any approved Casio or Sharp calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

For all the BJTs, assume

$$\beta = 100 \qquad V$$

$$V_A = 100 \text{ V}$$

$$V = 25 \text{ m/V}$$

$$V_{BE(on)} = 0.7 \text{ V}$$

 $V_{CE(sat)} = 0.3 \text{ V}$

$$V_T = 25 \text{ mV}$$

Given $V_{CC} = 10V$, $V_{bias} = 3 \text{ V}$ and $I_{bias} = 10\text{mA}$

a) Determine the output resistance, Ro.

(14 points)

b) Determine the minimum voltage that can be applied to v_x that would still allow this circuit to operate properly. (6 points)

OUESTION (2)

a) Derive the expression for voltage gain vout/vin. (15 points)

b) What is the function of this circuit?

(5 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 triode region

$$i_{DS} = \frac{1}{2}K(v_{GS} - V_{TH})^2 (1 + \lambda v_{DS})$$

saturation region

QUESTION (3)

The following common emitter amplifier is already biased properly. Determine the appropriate values for Cc1, Cc2, CE to provide a lower cutoff frequency of fL = 100 Hz. Which capacitor (20 points) dominates this corner frequency?

Given:
$$V_{CC} = 15 \text{ V}$$

 $R_{B1} = 180 \text{ k}\Omega$,
 $R_{B2} = 270 \text{ k}\Omega$,
 $R_{S} = 5 \text{ k}\Omega$,
 $R_{C} = 8 \text{ k}\Omega$,
 $R_{E} = 2 \text{ k}\Omega$,
 $R_{L} = 5 \text{ k}\Omega$,
 $\beta = 100$,
 $g_{m} = 40 \text{ mA/V}$, and
 $r_{\pi} = 2.5 5 \text{ k}\Omega$.

QUESTION (4)

The following common source amplifier is already biased properly.

a) Find the mid-band voltage gain vout /vi.

(6 points)

b) What is the new mid-band voltage gain, v_{OUT}/v_i if capacitor C_2 is removed?

(6 points)

c) What is the new 3dB frequency f_H if capacitor C_2 is removed?

(8 points)

QUESTION (5)

The following series-shunt feedback amplifier is already biased properly.

- a) Identify the feedback network (β circuit) and provide an expression for β . Also give an expression for the ideal or upper-bound value of the closed-loop gain A_f . You can neglect the output resistance r_o for M_1 and M_2 . (6 points)
- b) Determine the ratio R_2/R_1 that will provide an ideal closed-loop gain of 10 V/V. If $R_1 = 1 \text{ k}\Omega$, what should be the value for R_2 ? (4 points)
- c) Provide an expression for the open-loop gain $A\beta$ (6 points)
- d) For $g_{m1} = g_{m2} = 4$ mA/V, and $R_{D1} = R_{D2} = 10$ k Ω , determine the values of $A\beta$, A, and Af. (4 points)