## National Exam December 2016

## 07-Elec-A1, Circuits

#### 3 hours duration

## NOTES:

- 1. <u>No questions to be asked</u>. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
- 2. One of two calculators is permitted; any Casio or Sharp approved model.
- 3. This is a **<u>closed book</u>** examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please **indicate in the front page of your answer book which questions you want to be marked.** If not indicated, only the first five questions as they appear in your answer book will be marked.
- 5. All questions are of equal value. **Part marks will be given for right procedures.**
- 6. Some useful equations and transforms are given in the last page of this question paper.

Q1: (a) In the circuit shown in Figure-1, calculate the equivalent resistance at terminals a-b, Rab. [10]

(b) Calculate the voltage, V across the  $20\Omega$  resistance.



### Figure-1

Q2:(a) Write the mesh current equations of the circuit shown in Figure-2.[12](b) Solve the current, I from the 20V voltage source.[8]



Figure-2

[10]

Q3: For the Circuit shown in Figure-3, the switch was initially closed. At t=0, the switch is opened. Note the voltage, 20u(t) = 0 at t <0, and 20u(t) = 20V at t >0.



#### **Figure-3**

- Q4: (a) In the circuit shown in Figure-4, draw the phasor form of the circuit, and write the Node voltage equations with respect to the reference(ground) as indicated. [12]
- (b) Solve node voltages, and calculate the branch current i(t) through the capacitor. [8]



**Figure-4** 

- Q5: (a) Calculate the Thevenin's Voltage,  $V_{th}$  and Thevenin's impedance,  $Z_{th}$  at the terminals **a-b** of the [6+6] circuit shown in Figure-5.
  - (b) What value of load impedance  $Z_L$  which can be connected at terminals **a-b** for maximum power [4] dissipation in  $Z_{L?}$ [4]
  - (c) Calculate the maximum power,  $P_{\text{max}}$  which can be dissipated in  $Z_L$  .



Figure-5

Q6: (a) Convert the circuit shown in Figure-6 to its Laplace equivalent. [10] [10] (b)Solve the output voltage v(t) in the time domain, at  $t \ge 0$ .



Figure-6

# <u>Appendix</u>

| Some | useful | Laplace | <b>Transforms:</b> |
|------|--------|---------|--------------------|
|------|--------|---------|--------------------|

| <u>f(t)</u>                  | $\rightarrow$ | <u>F(s)</u>                                   |
|------------------------------|---------------|-----------------------------------------------|
| Ku(t)                        |               | K /s                                          |
| $\partial(t)$                |               | 1                                             |
| t                            |               | $1/s^{2}$                                     |
| e <sup>-at</sup> u(t)        |               | 1 / (s+a)                                     |
| sin wt .u(t)                 |               | $w / (s^2 + w^2)$                             |
| cos wt . u(t)                |               | $s / (s^2 + w^2)$                             |
| $e^{-lpha t}$ sin $\omega t$ |               | $\frac{\omega}{(s+\alpha)^2+\omega^2}$        |
| $e^{-\alpha t}\cos\omega t$  |               | $\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$    |
| $\frac{d f(t)}{dt}$          |               | $s F(s) - f(0^{-})$                           |
| $\frac{d^2 f(t)}{dt^2}$      |               | $s^{2}F(s) - s f(0^{-}) - f^{1}(0^{-})$       |
| $\int_{-\infty}^{t} f(q) dq$ |               | $\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$ |

#### Star - Delta conversion:



