National Exam December 2016

07-Elec-A1, Circuits

3 hours duration

NOTES:

1. No questions to be asked. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any logical assumptions made.
2. One of two calculators is permitted; any Casio or Sharp approved model.
3. This is a closed book examination.
4. Any five questions constitute a complete paper. Please indicate in the front page of your answer book which questions you want to be marked. If not indicated, only the first five questions as they appear in your answer book will be marked.
5. All questions are of equal value. Part marks will be given for right procedures.
6. Some useful equations and transforms are given in the last page of this question paper.

Q1: (a) In the circuit shown in Figure-1, calculate the equivalent resistance at terminals a-b, Rab. [10]
(b) Calculate the voltage, V across the 20Ω resistance.

Figure-1
Q2: (a) Write the mesh current equations of the circuit shown in Figure-2.
(b) Solve the current, I from the 20 V voltage source.

Figure-2

Q3: For the Circuit shown in Figure-3, the switch was initially closed. At $t=0$, the switch is opened. Note the voltage, $20 \mathrm{u}(\mathrm{t})=0$ at $\mathrm{t}<0$, and $20 \mathrm{u}(\mathrm{t})=20 \mathrm{~V}$ at $\mathrm{t}>0$.
(a) Solve $\mathrm{V}_{\mathrm{c}}\left(0^{-}\right)$and $\mathrm{i}\left(0^{-}\right)$, i.e just before the switch was opened.
[4+4]
(b) Solve $V_{c}(t)$ and $i(t)$ at $t>0$, i.e after the switch was opened.

Figure-3

Q4: (a) In the circuit shown in Figure-4, draw the phasor form of the circuit, and write the Node voltage equations with respect to the reference(ground) as indicated.
(b) Solve node voltages, and calculate the branch current $\mathrm{i}(\mathrm{t})$ through the capacitor.

Figure-4

Q5: (a) Calculate the Thevenin's Voltage, $\mathrm{V}_{\text {th }}$ and Thevenin's impedance, Z_{th} at the terminals \mathbf{a}-b of the circuit shown in Figure-5.
(b) What value ofload impedance Z_{L} which can be connected at terminals a-b for maximum power dissipation in Z_{L} ?
(c) Calculate the maximum power, $\mathrm{P}_{\max }$ which can be dissipated in Z_{L}.

Figure-5

Q6: (a) Convert the circuit shown in Figure-6 to its Laplace equivalent.
(b)Solve the output voltage $\mathrm{v}(\mathrm{t})$ in the time domain, at $\mathrm{t} \geq 0$.

Figure-6

Appendix

Some useful Laplace Transforms:

$\mathrm{f}(\mathrm{t})$	\rightarrow	F(s)
$\mathrm{Ku}(\mathrm{t})$		K/s
$\partial(t)$		1
t		1/s ${ }^{2}$
$e^{-a t} u(t)$		1/($\mathrm{s}+\mathrm{a}$)
$\sin w t . u(t)$		$\mathrm{w} /\left(\mathrm{s}^{2}+\mathrm{w}^{2}\right)$
cos wt. $\mathrm{u}(\mathrm{t})$		$s /\left(s^{2}+w^{2}\right)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^{2}+\omega^{2}}$
$e^{-\alpha t} \cos \omega t$		$\frac{(s+\alpha)}{(s+\alpha)^{2}+\omega^{2}}$
$\frac{d f(t)}{d t}$		$s \mathrm{~F}(\mathrm{~s})-\mathrm{f}\left(0^{-}\right)$
$\frac{d^{2} f(t)}{d t^{2}}$		$s^{2} F(s)-s f\left(0^{-}\right)-\mathrm{f}^{1}\left(0^{-}\right)$
$\int_{-\infty}^{t} f(q) d q$		$\frac{F(s)}{s}+\int_{-\infty}^{0} f(q) d q$

$$
\int_{-\infty}^{t} f(q) d q
$$

$$
\frac{F(s)}{s}+\int_{-\infty}^{0} f(q) d q
$$

Star - Delta conversion:

$$
Z_{1}=\frac{Z_{b} \cdot Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{2}=\frac{Z_{a} \cdot Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{3}=\frac{Z_{a} \cdot Z_{b}}{Z_{a}+Z_{b}+Z_{c}}
$$

$$
Z_{a}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{1}} \quad Z_{b}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{2}} \quad Z_{c}=\frac{Z_{1} \cdot Z_{2}+Z_{2} \cdot Z_{3}+Z_{3} \cdot Z_{1}}{Z_{3}}
$$

