16-CHEM-A2, UNIT OPERATIONS and SEPARATION PROCESSES

National Exams MAY 2019

3 hours duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
- 3. Candidates may use any non-communicating calculator.
- 4. All problems are worth 25 points. **Two problems** from **each** of parts **A** and **B** must be attempted.
- 5. Only the first two questions from each section as they appear in the answer book will be marked.
- 6. State all assumptions clearly.

PART A: UNIT OPERATIONS

A1. A batch centrifugal filter having a diameter of 750 mm and a height of 450 mm is used to filter a suspension (solids in water) at 25 °C having the following properties:

Concentration of solids in the feed = 60 g/L

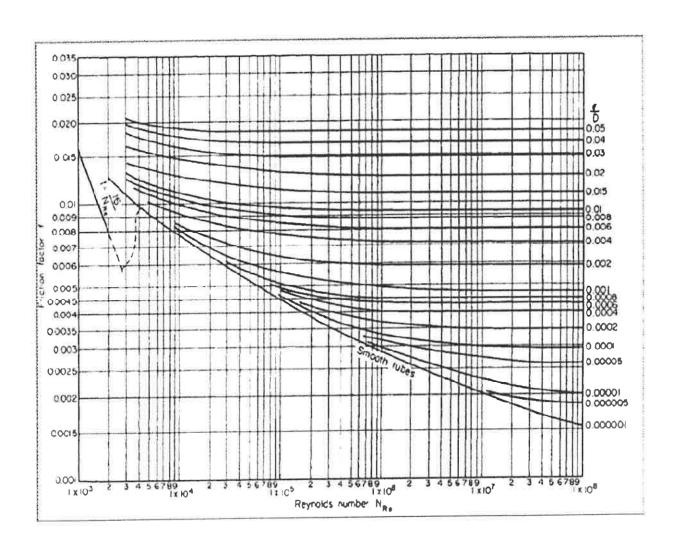
Density of dry solid in the cake = 2000 kg/m^3

Porosity of cake = 0.435

Final thickness of cake = 15 cm

Specific cake resistance = 9.5×10^{10} ft/lb

Filter medium resistance = $2.6 \times 10^{10} \text{ ft}^{-1}$


Speed of centrifuge filter = 2000 rpm

The cake is washed with water under such conditions that the radius of the inner surface of the liquid is 200 mm. Assuming that the rate of flow of wash water equals the final flow rate of filtrate, calculate the rate of washing in cubic meters per hour.

<u>DATA</u>: Viscosity of water = $0.9cP = 9 \times 10^{-4} \text{ Pa.s}$

Density of water = 998 kg/m^3

A2. A liquid (specific gravity = 2.6, viscosity = 2 x 10⁻³ Pa.s) flows through a hydraulically smooth long pipe of unknown diameter, resulting in a pressure drop of 0.183 lb_f/in² over a distance of 2.784 kilometers. Calculate the diameter of the pipe in inches if the mass flow rate of the liquid is 3,175 kg/hr.

Fanning friction factor (f) vs. Reynolds number (Re) for pipes

Transactions of the American Society of Mechanical Engineers, vol. 66, p.672 (1944)

A3. The pressure drop of water flowing through a bed of 20-mesh to 50-mesh resin (assume spherical particles) is said to be proportional to the flow rate and has a published value of 0.8

lbf per square inch per foot at a flow rate of 10 gallons per minute per square foot.

(a) [7.5 points] Predict the pressure drop using an arithmetic average particle size and a bed

void fraction of 0.35.

(b) [10 points] What average particle size would be needed for agreement with the published

value of pressure drop?

(c) [7.5 points] What void fraction would be needed for agreement with the published value

of pressure drop?

DATA:

Viscosity of water = $1 \text{ cP} = 1 \text{ x } 10^{-3} \text{ Pa.s}$

Density of water = 1000 kg/m^3

PART B: SEPARATION PROCESSES

B1. 100 moles of a saturated liquid feed containing 40 mol% acetone and 60 mol% ethanol is to be separated in a packed tower into an overhead product containing 85% acetone and a bottom product containing 5% acetone. The distillation is to be carried out at 1 atm using the following acetone-ethanol vapor-liquid equilibrium data:

Temperature (K)	Liquid Mole Fraction	Vapor Mole Fraction				
	of Acetone	of Acetone				
351.45	0.000	0.000				
349.55	0.033	0.111				
347.15	0.078	0.216				
343.95	0.149	0.345				
342.25	0.195	0.410				
338.75	0.316	0.534				
336.55	0.414	0.614				
334.45	0.532	0.697				
332.15	0.691	0.796				
330.45	0.852	0.896				
329.25	1.000	1.000				

The local mass transfer coefficients for this process are

$$k_{\nu}'a = 0.2 \, kmol/m^3$$
. s (mole fraction)

$$k_x'a = 1.6 \, kmol/m^3.s \, (mole \, fraction)$$

Assuming equal molar overflow, using a total condenser and reflux ratio of L/D = 2.5, determine the number of transfer units to perform the separation.

B2. Solute A is to be recovered from an inert carrier gas B by absorption into a non-volatile solvent. The gas mixture enters the absorber at a rate of 500 kmol/hr containing 30% by mole of A, and leaves the absorber with 1% by mole of A. Solvent enters the absorber at a rate of 1500 kmol/hr containing 0.1% by mole of A. The equilibrium relationship is the vapor phase mole fraction of A is 2.8 times the liquid phase mole fraction of A. The carrier gas is insoluble in the solvent. Compute and then construct x-y plot of equilibrium line and operating line on one graph using solute-free coordinates.

B3. The adsorption of sulfur dioxide (SO₂) on mordenite zeolite was studied at 0 °C and the following data was obtained:

Pressure of SO2, in mm Hg	SO ₂ Uptake, in mmol/g				
5	1.75				
10	2.20				
15	2.40				
20	2.62				
30	2.75 2.85				
40					
50	3.00				
60	3.05				
70	3.12				

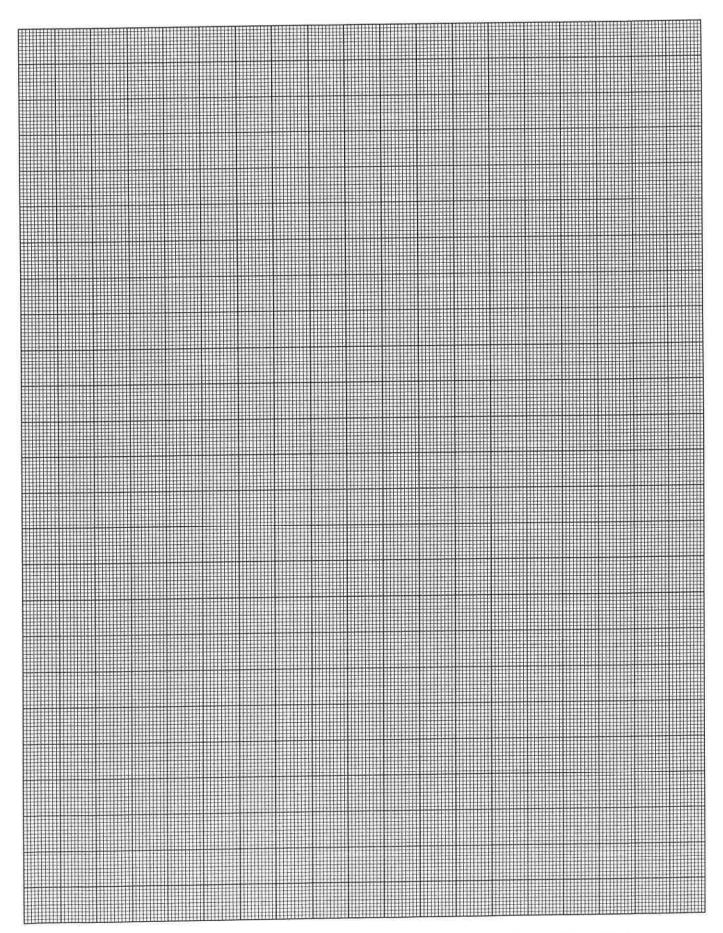
- (a) [20 points] Determine which isotherm fits the data and then evaluate the isotherm constants.
- (b) [5 points] Calculate the total surface area of the solid.

DATA: Avagadro's number = 6.023×10^{23} molecules/mole Density of liquid SO₂ at 0 °C in the adsorbed phase = 1430 kg/m^3

PARTICLE SIZE-U.S. SIEVE SIZE AND TYLER SCREEN MESH EQUIVALENTS

In the multiphase combustion area, we often encounter unburned and partially burned particles of different sizes. In the United States, these sizes are often expressed in a standard measured quantity in terms of either U.S. Sieve Size or Tyler Screen Mesh. Sieving or screening is a method of separating a mixture of particles (or grains) into two or more size fractions (see Tables E.1 and E.2). The over size particles are trapped above the screen while undersize particles can pass through the screen. Sieves can be used in stacks, to divide samples up into various size fractions and hence determine particle size distributions. Sieves and screen usually are used for larger particle sizes, $d_p \geq 37~\mu m$ (0.037mm).

TABLE D.1. Standard U.S. Sieve Sizes and Tyler Mesh Sizes


U.S. Sieve Size	Tyler Mesh Size	Opening (mm)	Opening (in)			
		8.00	0.312			
	3 mesh	6.73	0.265			
No. 3 1/2	3½ mesh	5.66	0.233			
No. 4	4 mesh	4.76	0.187			
No. 5	5 mesh	4.00	0.157			
No. 6	6 mesh	3.36	0.132			
No. 7	7 mesh	2.83	0.111			
	8 mesh	2.38	0.0937			
No. 8 No. 10	9 mesh	2.00	0.0787			
No. 12	10 mesh	1.68	0.0661			
No. 14	12 mesh	1.41	0.0555			
No. 16	14 mesh	1.19	0.0469			
	16 mesh	1.00	0.0394			
No. 18	20 mesh	0.841	0.0331			
No. 20 No. 25	24 mesh	0.707	0.0278			
	28 mesh	0.595	0.0234			
No. 30	32 mesh	0.500	0.0197			
No. 35	35 mesh	0.420	0.0165			
No. 40	42 mesh	0.354	0.0139			
No. 45	48 mesh	0.297	0.0117			
No. 50	60 mesh	0.250	0.0098			
No. 60	65 mesh	0.210	0.0083			
No. 70	80 mesh	0.177	0.0070			
No. 80	100 mesh	0.149	0.0059			
No. 100	115 mesh	0.125	0.0049			
No. 120	150 mesh	0.105	0.0041			
No. 140	170 mesh	0.088	0.0035			
No. 170	200 mesh	0.074	0.0029			
No. 200	250 mesh	0.063	0.0025			
No. 230	270 mesh	0.053	0.0021			
No. 270	325 mesh	0.044	0.0017			
No. 325 No. 400	400 mesh	0.037	0.0015			

									_				_	
Heiun 7 4.00	Neon 10 Ne 20.18	Agen 39.95	Krypton 36	궃	83.80	Xenon 54	×e	131.29	Radon 86	R	(222)	Ununectum 118	Ono	(594)
17	Fluorine 9 F	Chorine 17 CI 35.45	Bromine 35	B	79.90	lodine 53	_	126.90	Astaline 85	Αŧ	(210)	Uhurseptum 117	Ous	(294:)
16	Oxygen 8 0 16.00	Suffur 16 S 32.07	Selenium 34	Se	78.96	Tellurium 52	Te	127.60	Polonium 84	Ъо	(509)	Ununhexium 116	Uuh	(293)
5	Nitrogen 7 N 14.01	Phosphorus 15 P 30.97	Arsenic 33	As	74.92	Antimony 51	Sb	121.76	Bismuth 83	Ξ	208.98	Uhunpentium 115	Oup	(288)
41	Carbon 6 C	Silicon 14 Si 28.09	Germanium 32	Ge	72.61	- 20 20	Sn	118.71	Lead 82	Pb	207.20	Ununquadium 114	Und	(289)
5	Boron 5 B 10.81	Aluminum 13 Al 26.98	Gallium 3.1	Ga	69.72	Indium 49	드	114.82	Thatlam 81	F	204.38	Ununtrium 113		
-	Mass	ç	Zinc	Zu	62:39	Cadmium 48	S	112.41	Mercury 80	Hd	200.59	Copernicium 112	C	(285)
Atomic #	- Avg. Mass	;	Copper	c i	63.55	Silver 47	Ag	107.87	Gold 79	Αu	196.97	Roemgenium 111	Rg	(280)
	29 (Nickel	βŻ	58.69	Palladium 46	Pd	106.42	Platinum 78	Ŧ	195.08	Darmstadtium 110	Ds	(281)
→ Mercury80 	200.59		Cobait 27	္ ပိ	58.93	Rhodium 45	Rh	102.91	Iridium 77	<u>.</u>	192.22	-	Mt	
	5	,	ion o	Fe P	55.85	Ruthenium 44	Ru	101.07	Osmium 76	SO	190.23	Hassium 108	Hs	(270)
Element name	5		Manganese	Mn	54.94	Technetium 43	ر ا	(86)	Rhenium 75	Re	186.21	Bohrium 107	В	(272)
Eler			Chromium	ະ ບ້	52.00	Molybdenum 42	Mo	95.94	Tungsten 74	>	183.84	Seaborgium 106	Sg	(271)
s s		į	Vanadium	3 >	50.94	Niobium 41	S	92.91	Tantalum 73	_ E	180.95			(268)
Alkali metals Alkaline earth metals Transition metals Other metals	Nonmetals Halogens Noble gases		Trianium	7 I	47.88	Zirconium	7.	91.22	Hainium 72	Ξ.	178.49	Rutherfordium	Z.	(267)
Alkal Alkal Trans Other	Noni Halo Nobl		Scandium	27	44.96	Yttriúm	>	88.91	Lutetium 71	=	174.97	Lawrencium	בֿ	
										57-70	•		89-102	
2	Berralum Be	Mg 24,31	Calcium	50 20 20	40.08	Strontium	S V	87.62	Barium	3 %	137.33	Radium	Ra	(226)
H _r drogen 1.01	3 Li Li 6.94	11 Na 22.99	otassium	₽ 2 2	39.10	Rubidium 27	ر م	85.47	Cesium	3 0	132.91	Francium 0.7	F o	(223)

18

The Periodic Table of the Elements

70 Yb 173.04	Nobelium 102 No (259)
69 Tm 168.93	Md (258)
68 Er 167.26	Fermium 100 Fm (257)
67 Ho 164.93	Einsteinlum 99 ES (252)
66 Dy 162.50	Californium 98 Cf (251)
65 Tb 158.93	Berkellum 97 BK (247)
64 Gd 157.25	Cm (247)
63 Eu 151.97	Americium 95 Am (243)
Sm Sm 150.36	Plutonium 94 Pu (244)
61 Pm (145)	Neptunium 93 Np (237)
Neodymium 60 Nd 144.24	Uranium 92 U 238.03
59 Pr 140.91	Protactinium 91 Pa 231.04
Ce 140.12	Thorium 90 Th 232.04
57 57 La 138.91	89 89 AC (227)
*lanthanides	**actinides

