NATIONAL EXAMINATIONS MAY 2019

04-BS-5 ADVANCED MATHEMATICS

3 Hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumption made.
- 2. Candidates may use one of the approved Casio or Sharp calculators. This is a Closed Book Exam. However, candidates are permitted to bring **ONE** aid sheet (8.5"x11") written on both sides.
- 3. Any five (5) questions constitute a complete paper. Only the first five answers as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme

- 1. 20 marks
- 2. (a) 15 marks; (b) 5 marks
- 3. (a) 5 marks; (b) 9 marks; (c) 6 marks
- 4. 20 marks
- 5. 20 marks
- 6. (a) 6 marks; (b) 7 marks; (c) 7 marks
- 7. (a) 10 marks; (b) 10 marks

1. Consider the following differential equation:

$$(x^2+4)\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} - 2y = 0$$

Find two linearly independent solutions about the ordinary point x=0.

2. (a) Find the Fourier series expansion of the periodic function f(x) of period $p=2\pi$.

$$f(x) = \begin{cases} x + \pi & -\pi < x < 0 \\ \pi/2 & 0 < x < \pi \end{cases}$$

- (b) Use the result obtained in (a) to prove that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$
- 3. Consider the following function where a is a positive constant

$$f(x) = \begin{cases} a\cos^2(ax) & -\frac{\pi}{2a} \le x \le \frac{\pi}{2a} \\ 0 & otherwise \end{cases}$$

- (a) Compute the area bounded by f(x) and the x-axis. Graph f(x) against x for a = 2 and a = 4.
- (b) Find the Fourier transform $F(\omega)$ of f(x).
- (c) Explain what happens to f(x) and $F(\omega)$ when a tends to infinity.

Note:
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-i\omega x) dx$$

4. Set up Newton's divided difference formula for the data tabulated below and derive from it the polynomial of highest possible degree. Then compute F(-3) and F(0).

X	-5	-4	-2	-1	1	2	3
F(x)	256	66	-8	0	16	60	192

5. The following results were	obtained in a certain	experiment:
-------------------------------	-----------------------	-------------

	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
X	10.0	1.0	100	9.0	9.0	12.0	18.0	26.0	31.0
$f(\mathbf{x})$	19.0	12.0	10.0	8.0	9.0	12.0	16.0	20.0	31.0

Use Romberg's algorithm to obtain an approximation of the area bounded by the unknown curve represented by the table and the lines x = 0.0, x = 8.0 and the x-axis.

Note: The Romberg algorithm produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_{a}^{b} f(x)dx$. The array is

denoted by the following notation.

denoted	by the foliowing heads			
R(1,1)				
R(2,1)	R(2,2)			
R(3,1)	R(3,2)	R(3,3)		
R(4,1)	R(4,2)	R(4,3)	R(4,4)	
where				
$R(1,1)=\frac{1}{2}$	$\frac{H_1}{2}\big[f(a)+f(b)\big]$			
$R(k,1) = \frac{1}{2}$	$H_k = \frac{b-a}{2^{k-1}}$			
R	$(k, j) = R(k, j-1) + \frac{R(k, j-1)}{n}$	$\frac{(k-1)-R(k-1,j-1)}{4^{j-1}-1}$		

- 6. (a) The equation $5^x + 3x 10 = 0$ has only one root. This root is located between a=1 and b=2. Use the method of bisection four times to find a better approximation to this root.
- (b) Starting with the last result obtained in (a) try to get a better approximation using the Newton-Raphson method twice. (Note: Carry seven digits in your calculations in the (b) part).
- (c) The equation given in (a) can be written in the form x = g(x) in two obvious ways: (i) $x = ln(10 5^x)/ln5$ and (ii) $x = \frac{(10 5^x)}{3}$. Use the first form to find a better approximation to the root. Start with $x_0 = 1$ and use the method of fixed-point iteration five times. Explain why this form converges to the root.

7. Consider the matrices
$$A = \begin{pmatrix} 13 & 3 & 5 \\ 3 & 7 & 2 \\ 5 & 2 & 6 \end{pmatrix}$$
, $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

(a) The characteristic equation of the matrix A is given by the following equation:

 $\mu^3 - 26\mu^2 + 173\mu - 325 = 0$

According to the Cayley-Hamilton theorem the matrix A satisfies its characteristic equation that is:

$$A^3 - 26A^2 + 173A - 325U = 0 (1)$$

Equation (1) can be rewritten as follows;

$$U = \frac{1}{325} (A^3 - 26A^2 + 173A) \tag{2}$$

Premultiplying equation (2) by A^{-1} we get:

$$A^{-1} = \frac{1}{325} \left(A^2 - 26A = 173U \right) \tag{3}$$

Use equation (3) to find A^{-1} . Make sure that $A^{-1}A = U$.

(b) Use the result obtained in (a) to solve the following system of the linear equations

$$13x + 3y + 5z = 17$$
$$3x + 7y + 2z = -7$$
$$5x + 2y + 6z = 13$$