National Exams May 2016

04-BS-6: Mechanics of Materials

3 hours duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
2. Candidates may use one of two calculators, the Casio or Sharp approved models.

This is a Closed Book exam. However candidates are permitted to bring the following into the examination room:

- ONE aid sheet $8.5^{\prime \prime} \times 11$ " hand-written on both sides containing notes and formulae. Example problems and solutions to problems are not allowed!

3. Any FIVE (5) questions (out of 8 given) constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.
5. Information on geometric properties of wide flange or W shape sections is attached at the end of this exam.

NOTE: The aid sheet must be handed in with the exam!

Your exam will not be marked if you do not hand in an aid sheet, unless there is a signed statement by the exam invigilator stating that no aid sheet was used for the exam.

Question 1: The cantilevered beam shown below is a sandwich beam with a plastic core and aluminum alloy faces. The member is subjected to a concentrated load at the free end. The plastic core ($240 \mathrm{~mm} \times 200 \mathrm{~mm}$ in cross-section) has an elastic modulus of 100 GPa and allowable normal stress of 220 MPa , while the 6 mm thick aluminum face plates have an elastic modulus of 75 GPa and allowable normal stress of 260 MPa .
[18 marks] (a) Determine whether the composite beam can support the loading shown. (remember to check for failure in each material)
[2 marks] (b) Give the maximum load P the beam can support without causing failure.

Question 2: A cantilevered beam is subjected to a uniformly distributed load in addition to a concentrated load acting at the free end of the member. The beam is a wide flange W610 $\times 125$ section and is made of steel with an allowable normal stress of 240 MPa and allowable shear stress of 60 MPa . The elastic modulus of the steel equals 200 GPa . Refer to the attached table for section properties.
[19 marks] (a) Determine the deflection and slope at the free end of the beam using the method of integration.
[1 mark] (b) Sketch the deflected shape of the beam and indicate whether the beam satisfies an allowable deflection limit of $\mathrm{L} / 120$ (where L equals the span of the beam).

Question 3: A steel spreader beam is used to support a vertical load of 120 kN as shown. The [20 marks] spreader beam is supported with steel cables attached to a connection plate at each end of the beam. The beam has the cross section given and is made of steel with a normal yield stress of 350 MPa and yield stress in shear of 60 MPa . The elastic modulus of the steel equals 200 GPa .
(a) Compute the distribution of normal stress in the spreader beam at the location of the point load (that is, at midspan). Show this distribution on a sketch and make sure to show maximum and minimum values of stress.
(b) Compute the maximum shear stress in the spreader beam at the same location. Also sketch the distribution of shear stress on the section.

beam cross-section (all dimensions in mm)

Question 4: For an element in a state of plane stress subjected to the normal and shear stresses [20 marks] shown below, use the Mohr's circle solution (not the transformation equations) to determine the following:
(a) the principal stresses and orientation of the principal planes, showing your answer on a properly oriented element.
(b) the maximum in-plane shear stress (and associated normal stresses) and orientation of the corresponding planes. Once again, show your answer on a sketch of a properly oriented element.

WARNING! Credit will only be given for a solution using Mohr's circle. Not the stress transformation equations. This means that you need to draw a Mohr's circle based on the stress components given in this problem. Remember to show numbers on your circle. Your calculations must be based on the geometry of your circle. So use your calculator. In other words, you are expected to use trigonometry to construct your Mohr's circle. Do not give a graphical solution that is scaled off!

The stress transformation equations can only be used to check your answer.

Question 5: The truss type structure shown below has been designed to resist a horizontal load P . [20 marks] The inclined strut BC has a cross-section area $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and is made of steel with an elastic modulus of 200 GPa and allowable yield strength of 340 MPa . The vertical member $A B$ has a cross-section area $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ and is also made of steel with an elastic modulus of 200 GPa and allowable yield strength of 340 MPa .

Determine the largest load P that can be applied to the structure. Use a safety factor of 2 against buckling and consider buckling in the plane of the structure only. Do not use a safety factor for yielding of the steel. Assume all members are pin connected.

Question 6: A rigid vertical bar (ABC) is supported by a 20 mm diameter pin at A and two 12 mm diameter cables at points B and C. The cable at B has a length of 4 m and the cable at C has a length of 2 m . Both cables are made of steel with a yield strength of 400 MPa and elastic modulus of 200 GPa . The bar is loaded with a triangularly distributed load having a maximum intensity of $20 \mathrm{kN} / \mathrm{m}$ two-thirds up the bar (at B) plus a concentrated load of 25 kN acting at the top of the bar (at C).
[12 marks] (a) find the forces developed in each cable
[4 marks] (b) find the corresponding horizontal displacement at the top of the bar (point C)
[4 marks] (c) find the shear stress in the pin at A given that the pin is loaded in double shear.

Question 7: A circular shaft is fixed at the left end (point A) and subjected to three torques (points B, C and D) acting as shown below. Part of the shaft (CD) is hollow and the entire shaft is made of aluminum with $\mathrm{G}=25 \mathrm{GPa}$ and a yield stress τ_{y} of 200 MPa. Dimensions (diameter and length) and magnitude of the torques are given in the diagram.
[12 marks] (a) determine the maximum shear stress in the shaft and sketch the variation of shear stress along the shaft radius for the cross-section where the stress is maximum.
[6 marks] (b) find the angle of twist at the end of the shaft (point D) and give your answer in degrees.
[2 marks] (c) what would happen if the loads on the shaft were doubled?

Question 8: A simply supported beam with an overhang is subjected to a uniformly distributed [20 marks] load acting on the overhang in addition to a couple acting at the end of the overhang as shown. The beam has the cross-section given and is made of steel with a yield strength of 350 MPa and shear stress at yield of 75 MPa . The elastic modulus of the steel is 200 GPa .

Determine the SHEAR FORCE and BENDING MOMENT along the length of the beam as a function of x. In other words, find $V(x)$ and $M(x)$ for the beam.

Then draw the corresponding shear force and bending moment diagrams for the beam (label all critical points and show your work by indicating exactly how you obtained your answers).

Designation	Area A	Denth d	Web thickness t_{w}	Flange		x-x ${ }^{\text {ax }}$:			$y-y$ axis		
				width	thickness						
				b,	t	i	S	r	I	S	$!$
$m \mathrm{~m} \times \mathrm{kg} / \mathrm{m}$	mm^{2}	iTm:	men	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}{ }^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm
W610 $\times 155$	19800	611	12.70	3240	19.0	1290	4220	255	108	667	73.9
W6010 < 140	17900	617	13.10	230.0	22.2	1120	36,30	250	45.1	392	50.2
W610 $\times 125$	15900	612	11.90	2290	19.6	985	3220	249	39.3	343	49 ?
W610 $\times 113$	14400	608	11.20	228.0	17.3	875	2880	247	34.3	301	48.8
W610 $\times 101$	12900	60.3	10.50	228.0	14.9	764	2530	243	29.5	259	47.8
W610 $\times 92$	11800	603	10.90	179.0	15.0	640	2140	234	14.4	161	34.9
W610 $\times 82$	10500	599	10.00	178.0	12.8	560	1870	231	12.1	136	33.9
W460 ${ }^{6} 97$	12300	46	11.40	193.0	19.0	4.45	1910	190	22.8	236	43.1
W460 $\times 89$	11.400	463	10.50	192.0	17.7	410	1770	190	20.9	218	42.8
17460×82	10400	46	9.91	191.0	16.0	370	1610	189	18.6	195	42.3
W 460×74	9460	457	9.02	190.0	14.5	333	1460	188	16.6	175	41.9
W460 $\times 68$	8730	459	9.14	154.0	15.4	297	1290	18.4	9.41	122	32.8
W460 $\times 60$	7590	455	8.00	153.0	13.3	255	1120	183	7.96	10.4	32.4
W460 $\times 52$	6640	450	7.62	152.0	10.8	212	942	179	6.34	83.4	30.9
W+10 $\times 85$	10800	417	10.90	181.0	182	315	1510	171	180	199	40.8
W410 $\times 74$	9510	415	9.65	1800	16.0	275	1330	170	15.6	173	40.5
W.10 $\times 6.7$	8560	410	8.76	179.0	14.4	24.5	1200	169	13.8	154	40.2
$w+10 \times 53$	6820	403	7.49	177.0	10.9	186	92.3	165	10.1	114	38.5
W+10 $\times 46$	5890	403	6.99	140.0	11.2	156	774	16.5	5.14	73.4	29.5
$W 410 \times 39$	4960	390	6.35	140.0	8.8	126	632	159	4.02	57.4	28.5
W360 $\times 79$	10160	354	9.40	205.0	16.8	227	1286	150	24.2	236	48.9
6360×6.4	8150	347	7.75	203.0	13.5	179	1030	148	18.8	185	48.0
W360 $\times 57$	7200	358	7.87	172.0	13.1	160	894	149	11.1	129	39.3
W360 $\times 51$	6.450	355	7.24	171.0	11.6	141	794	148	9.65	113	38.7
W360 $\times 15$	3710	352	6.86	171.0	9.8	121	688	146	Sth	95.4	37.8
13.360×39	4960	353	6.48	128.0	10.7	102	578	143	3.75	58.6	27.5
Wrat $\because 3$	4100	349	5.8 .4	1270	\& 5	82.9	45	1.4]	291	458	26.4

Designation	$\begin{gathered} \text { Area } \\ A \end{gathered}$	Depth d	Web thickness ε_{i}	Flange							
						$x-x a x i s$			y-yaxis		
				with	thic						
				b.	t_{i}	1	5	\%	1	S	r
$\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$	mm^{2}	mm	mm	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{2} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm
W310 $\times 129$	16500	318	13.10	308.0	20.6	308	1940	137	100	649	77.8
W310 $\times 74$	9480	310	9.40	2050	16.3	165	1060	132	23.4	228	49.7
W310 $\times 67$	8530	306	8.51	204.0	146	145	948	130	20.7	203	49.3
W310 $\times 39$	4930	310	5,8.8	165.0	9.7	84.8	547	131	7.23	87.6	38.3
W310 $\times 33$	4180	313	6.60	102.0	10.8	65.0	415	125	1.92	37.6	21.4
$W 310 \times 24$	3040	305	5.59	101.0	6.7	42.8	281	119	1.16	23.0	10.5
W310 $\times 21$	2680	303	5.08	104.0	5.7	37.0	244	117	0.986	19.5	19.2
W250 $\times 149$	19000	282	17.30	2630	28.4	259	1840	117	86.2	636	67.4
W250 $\times 80$	10200	256	9.40	2550	15.6	126	08.4	111	43.1	338	65.0
W250 $\times 6.0$	8560	297	8.85	2040	15.7	104	86	110	22.2	218	50.9
W250 $\times 5$	7400	252	sco	2030	13.5	87.	693	169	18.8	185	50.4
W250 $\times 45$	570	260	7.62	148.0	13.0	71.1	585	112	7.63	95	35.1
W250 $\times 28$	3620	260	6.35	102.0	100	39.9	307	105	1.78	34.9	22.2
W250 $\times 22$	2850	254	5.84	102.0	6.9	288	227	101	1.22	23.9	20.7
W250 $\times 18$	2280	251	4.83	10.0	5.3	225	179	99.3	0.919	18.2	20.1
w200 $\times 100$	12700	229	14.50	2100	23.7	113	987	94.3	36.6	349	53.7
W200 $\times 86$	11000	222	1300	2090	20.6	94.7	853	92.8	31.4	300	53.4
W200 $\times 71$	9100	216	10.20	206.0	17.4	76.6	709	91.7	25.4	247	52.8
W200 $\times 50$	7580	210	9.14	205.0	14.2	61.2	583	89.9	20.4	199	51.9
W200 $\times 46$	5890	203	7.24	203.0	11.0	45.5	448	87.9	15.3	151	51.0
$1 \mathrm{2} 200 \times 36$	4570	201	6.22	1650	10.2	3.4 .4	342	86.8	7.64	92.6	40.9
W260 $\times 22$	2860	20%	6.22	1020	8.0	20.5	194	83.6	1.42	27.8	22.3
W150 $\times 37$	4730	162	8.13	154.0	11.6	23.2		68.5	7.07	91.8	38.7
W150 $\times 30$	3700	157	6.60	1530	9.3	17.1	218	67.2	5.54	72.4	38.2
W150 $\times 22$	2860	152	5.84	152.0	6.6	12.1	159	650	3.87	50.9	36.8
W150 $\times 24$	3060	160)	6.60	102.0	10.3	13.4	168	66.2	1.83	35.9	24.5
W150 $\times 18$	2290	153	5.84	102.0	7.1	9.19	100	63.3	1.26	24.7	23.5
$W 150 \times 14$	1730	150	4.32	100.0	5.5	6.84	91.2	62.9	0.912	18.2	23.0

