National Exams May 2017 04-BS-1, Mathematics 3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
- 2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. (a) 7 marks, (b) 7 marks, (c) 6 marks
- 2. 20 marks
- 3. 20 marks
- 4. 20 marks
- 5. (a) 10 marks, (b) 10 marks
- 6. 20 marks
- 7. 20 marks
- 8. 20 marks

1. Find the general solutions of the following differential equations:

(a)
$$x^2y' + 2xy = 2\sin(3x)$$
,

(b)
$$y' + 2xy^2 = 0$$
,

(c)
$$3y'' + 5y' - 2y = 0$$
.

Note that in each case, ' denotes differentiation with respect to x,

2. Find the general solution to the differential equation $2x^2y'' + xy' - 3y = 4/x^2$. Note that 'denotes differentiation with respect to x.

3. Find the maximum and minimum values of f(x, y, z) = x + y - z over the sphere $x^2 + y^2 + z^2 = 1$.

4. Solve the initial value problem

$$x' = 3x + y,$$
 $x(0) = 1,$
 $y' = -2x + y,$ $y(0) = 0.$

5. Let P be the plane passing through the three points (2,1,-2), (1,2,0) and (1,0,-1).

(a) Find an equation representing the plane P.

(b) Find the line of intersection between the plane P and the plane x + y - 2z = 3

6. Let C be the curve formed by the intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = 1 + y, and let v be the vector function $\mathbf{v} = 4z\mathbf{i} - 2x\mathbf{j} + 2x\mathbf{k}$. Evaluate the line integral $\oint_C \mathbf{v} \cdot d\mathbf{r}$. Assume a clockwise orientation for the curve when viewed from above.

7. Let S be the boundary of the region enclosed by the paraboloid $z = x^2 + y^2 - 2$ and the plane z = 2 and let

$$\mathbf{F}(x, y, z) = xy^2\mathbf{i} + 2xyz\mathbf{j} - xz^2\mathbf{k}.$$

Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, where \mathbf{n} is the unit outward normal on S.

8. Compute the response of the damped mass-spring system modelled by

$$y'' + 3y' + 2y = r(t),$$
 $y(0) = 0,$ $y'(0) = 0,$

where r is the square wave

$$r(t) = \begin{cases} 1, & 1 \le t < 2, \\ 0, & \text{otherwise,} \end{cases}$$

and 'denotes differentiation with respect to time.