NATIONAL EXAMINATION, MAY 2014

04-Env-A4-Water and Wastewater Engineering

3 hours duration

Notes:

- 1. Question 1 is compulsory, attempt any three questions from the remaining four questions.
- 2. If doubts exist as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 3. This is a closed book exam. However, one aid sheet is allowed written on both sides.
- 4. An approved calculator is permitted.
- 5. Marks of all questions are indicated at the end of each question.
- 6. Clarity and organization of answers are important.

Q1 (25 marks)

Define and differentiate between the following water and wastewater quality parameters.

- i. Total ammonia and free ammonia (5 marks)
- ii. COD and BOD (5 marks)
- iii. Hydroxyl and carbonate alkalinity (5 marks)
- iv. Temporary and permanent hardness (5 marks)
- v. Mineral and carbon dioxide acidity (5 marks)

Q2 (25 marks)

- a. Explain the principal of water softening with ion exchange process (10 marks)
- b. Describe the jar test procedure for determining optimum coagulant dose in water treatment (10 marks)
- c. Define and describe the significance of residual chlorine in water supplies (5 marks).

Q3 (25 marks)

- a. With a neat diagram, explain the principal and working of a rotating biological contactor system in wastewater treatment (15 marks)
- b. A dairy processing wastewater produces a wastewater flow of 1000 m³/d with a COD of 10,000 mg/L. The industry is required to meet the municipal sewer use by-law that requires the treated effluent discharge to municipal sewers with COD not exceeding 500 mg/L. The industry wants to find a treatment solution with minimum footprint and energy requirements. Explain the reasons for your choice, describe the system you will recommend as a wastewater engineer that meets the industry requirements. (10 marks)

Q4 (25 marks)

A conventional activated sludge based wastewater treatment plant (WWTP) has an average flow of $15,000 \text{ m}^3/\text{d}$. For a primary effluent BOD₅ value of 150 mg/L, and a peak hourly flow factor 3.0 determine the following:

- a. Oxygen demand and air requirement for 95% BOD removal (10 marks)
- b. Volume of aeration tank for an SRT of 4d, TSS yield of 0.8 kg TSS/kg-BOD₅ and MLSS of 2,000 mg/L (8 marks)
- c. Secondary clarifier area for maximum allowable peak hourly surface overflow rate of 35 m³/m²-d (7 marks)

Q5 (25 marks)

Draw the process schematic of a water treatment plant that has a raw water source with 150-200 NTU of turbidity, 100 mg/L of hardness, pH of 6.5 and seasonal taste and odours. Show all liquid and solid streams, chemical injection points, and expected water quality with regards to hardness, turbidity, iron and pathogens after treatment. (25 marks)