NATIONAL EXAMINATION - DECEMBER 2013

- STATICS AND DYNAMICS -

(04-BS-3)

3 HOURS' DURATION

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer-paper a clear statement of any assumption made.
- 2. This is a "CLOSED BOOK" examination. However, candidates may bring ONE 8½"×11" sheet of self-prepared notes. Candidates may use one of two calculators, the Casio or Sharp approved models.
- 3. Squared paper will be provided, on request of the candidate, as an aid in the conducting of graphical solutions, if that is the method of solution preferred.
- 4. Candidates are required to complete 2 questions from PART A and 2 questions from PART B.
- 5. If more than four questions are presented for assessment then only the **first four undeleted** solutions encountered will be marked.
- 6. All questions are of equal value.
- 7. Hand in examination question paper and self-prepared note sheet (formula sheet) with solution booklet.

PART A - STATICS

(ANSWER ANY 2 OF THE 3 QUESTIONS)

I. (20 Marks)

Determine the force in each member of the truss shown and state whether each member is in tension or compression.

NOTE: Each grid division represents a distance of one metre.

FIGURE 1.

National Examination 04-BS-3/2013-December

Page 2 of 7

II. (20 Marks)

The circular door shown in figure 2, has a weight of 65 lb_f and a centre of gravity at G. Using cartesian vector methods, determine the x,y,z components of the reaction at the hinge A and the force acting along strut CB required to hold the door in equilibrium if the angle $\theta = 45^{\circ}$.

FIGURE 2

III. (20 Marks)

The uniform beam which weighs 50 N is supported by the rope which is attached to the end of the beam, wraps over the rough peg, and is then connected to the 100 N block. If the coefficient of static friction between the beam and the block, and between the rope and the peg, is $\mu_s = 0.4$, determine the maximum distance that the block can be placed from A and still remain in equilibrium. Assume the block will not tip.

FIGURE 3

PART B - DYNAMICS

(ANSWER ANY 2 OF THE 3 QUESTIONS)

IV. (20 Marks)

The crate has a mass of 175 kg and rests on a surface for which the coefficients of static and kinetic friction are $\mu_k = 0.3$ and $\mu_s = 0.2$, respectively. If the motor M supplies a cable force of $F = (8t^2 + 20)$, where t is in seconds, determine the power output developed by the motor when t = 5 seconds.

FIGURE 4.

V. (20 marks)

A horizontal force of P = 45 Newtons is applied to block A, as shown in figure 5. Neglecting friction determine the acceleration of block B.

FIGURE 5.

VI. (20 marks)

A 5-kg projectile travels with a horizontal velocity of 700 m/s before it explodes and breaks into two fragments A and B of mass 2 kg and 3 kg, respectively. If the fragments travel along the parabolic trajectories as shown in figure 6, determine the magnitude of velocity of each fragment just after the explosion and the horizontal distance d_A where segment A strikes the ground at C.

FIGURE 6.

