National Exams December 2014 04-BS-1, Mathematics 3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
- 2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. (a) 10 marks, (b) 10 marks
- 2. 20 marks
- 3. (a) 7 marks, (b) 7 marks, (c) 6 marks
- 4. 20 marks
- 5. 20 marks
- 6. 20 marks
- 7. (a) 6 marks, (b) 6 marks, (c) 8 marks
- 8. 20 marks

- 1. For each of the following differential equations, find the general solution, y(x).
 - (a) $y'' + 4y = \sec 2x$

(b)
$$y'' + y' - 6y = 3x^2 + e^{2x}$$

Note that ' denotes differentiation with respect to x.

2. Find the general solution, y(x), of the differential equation

$$2x^2y'' + xy' - 3y = \frac{4}{x}.$$

Note that ' denotes differentiation with respect to x.

3. Consider the two lines defined as follows:

$$x=2-t, \quad y=3t, \qquad z=1+t, ext{ (parameter t)}; $x=1+s, \quad y=3-2s, \quad z=2+4s, ext{ (parameter s)}.$$$

- (a) Determine whether or not the two lines intersect, and if so, find the point of intersection.
- (b) Find a third line orthogonal to both lines.
- (c) Is there a plane containing both lines? If so, find an equation for that plane.
- 4. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot dS$, where

$$\mathbf{F}(x, y, z) = 4x\mathbf{i} + 2x^2\mathbf{j} - 3\mathbf{k},$$

S is the surface of the region bounded by the cone $z = 4 - \sqrt{x^2 + y^2}$ and the plane z = 0.

- 5. Let C be the curve formed by the intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = 1 + y, and let v be the vector function $\mathbf{v} = 4z\mathbf{i} 2x\mathbf{j} + 2x\mathbf{k}$. Evaluate the line integral $\oint_C \mathbf{v} \cdot d\mathbf{r}$. Assume a clockwise orientation for the curve when viewed from above.
- 6. Find the volume of the solid region outside the cylinder $x^2 + y^2 = 1$, but inside the elipsoid $x^2 + y^2 + 4z^2 = 4$.
- 7. Consider the matrix

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ -10 & -4 & -2 \end{pmatrix}$$

- (a) Show that $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ is an eigenvector of A and find the associated eigenvalue.
- (b) Show that 3 is an eigenvalue of A and find and associated eigenvector.
- (c) Solve the linear system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ for the function $\mathbf{x}(t)$.
- 8. Let $f(x,y) = 1 + x \ln(xy 5)$. Find a formula for the plane tangent to the surface z = f(x,y) at the point (2,3) and use the tangent plane to approximate f(2.1,2.95).