## National Exams December 2018

## 16-Civ-B19, Foundation Engineering

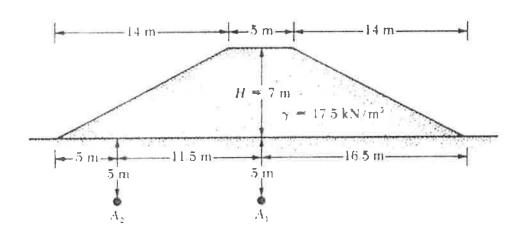
### 3 hours duration

# NOTES:

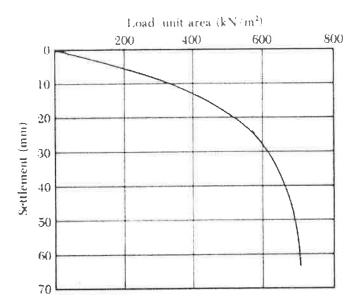
- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit a clear statement of any assumptions made with the answer paper.
- This is an OPEN BOOK examination. Candidates can bring **ONE textbook** of their choice. The textbook can have notations listed on the margins but no loose notes are permitted; **plus ONE aid sheet** 8.5" X 11" hand-written on both sides containing notes and formulae.
- 3. Please answer all 5 (FIVE) questions. All questions carry equal weight.
- 4. For non-numeric questions, clarity and organization of the answer are important.
- 5. Any non-communicating calculator is permitted.
- 6. The exam has six pages including this one. Please check that your exam has all pages.

#### Shallow Foundation

Q.1
Briefly discuss the following, using diagrams or equations whenever possible:

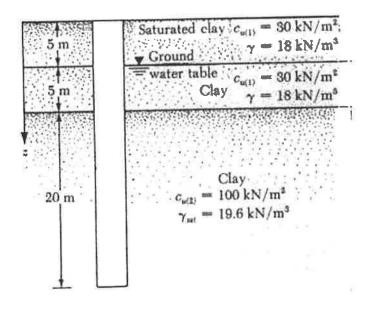

- a. Ultimate Limit state and serviceability limit state for shallow foundations
- b. Overburden pressure, and distribution of stress increase within the supporting soil due to a shallow foundation's load
   (5 points)

A square foundation is 5 ft x 5 ft in plan. The soil supporting the foundation has a friction angle of  $\phi = 20^{\circ}$  and  $c = 320 \text{ lb/ft}^2$ . The unit weight of soil,  $\gamma$ , is  $115 \text{lb/ft}^3$ .


- (a) Determine the allowable gross load on the foundation with a factor of safety (FS) of 4. Assume that the depth of foundation (D<sub>f</sub>) is 3 ft and that the general shear failure occurs in the soil. (5 Points)
- (b) Determine the net allowable load for the foundation if the factor of safety is 5. (5 points)
- (c) Determine the net allowable load for the foundation if the  $FS_{shear} = 1.5$ . (5 points)

Q.2

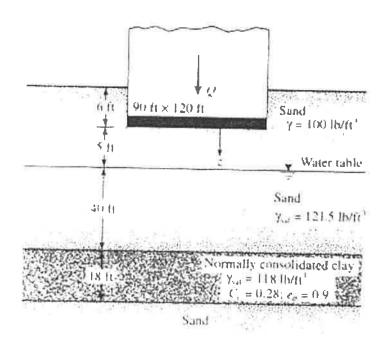
(a) An embankment is shown in figure below. Determine the stress increase under the embankment at points  $A_1$  and  $A_2$ . (10 points)




(b) The results of a plate load test in a sandy soil are shown in the figure below. The size of the plate is 0.305m x 0.305m. Determine the size of the square column foundation that should carry a load of 2500 kN with a maximum settlement of 25 mm. (10 points)



#### Pile Foundation


Q.3
(a) Identify and briefly discussed the major conditions that require pile foundation. ((5 points)



- (b) A driven pipe pile in clay is shown in Figure above. The pipe has an outside diameter of 400 mm and wall thickness of 6.25 mm.
  - I. Calculate the net point bearing capacity.
  - II. Calculate the skin resistance
- III. Estimate the net allowable pile capacity. Use FS = 4.(15 points)

### Mat Foundation

- Q.4
- (a) Identify different types of mat foundations and the circumstances where a mat foundation is required. (4 points)
- (b) Determine the net ultimate bearing capacity of a mat foundation of size 40 ft x 35 ft. constructed on saturated clay with  $c_u = 18250$  lb/ft<sup>2</sup> and  $D_f = 6.0$  ft. (5 points)
- (c) Consider a mat foundation 75 ft x 100 ft in plan as shown in figure below. The total dead and live load on the mat is  $40 \times 10^3$  kips. Estimate the consolidation settlement at the centre of the foundation. (11 points)



# **Group Piles**

Q.5

The section of a 3  $\times$  4 group pile is a layered clay is shown in figure below. The piles are square in cross section (14 in  $\times$  14 in). The centre to centre spacing, d, of the piles is 35 in.

- (a) Determine the allowable load-bearing capacity of the pile group. (12 points)
- (b) Determine the efficiency of the pile group using any method of your choice. (8 points)

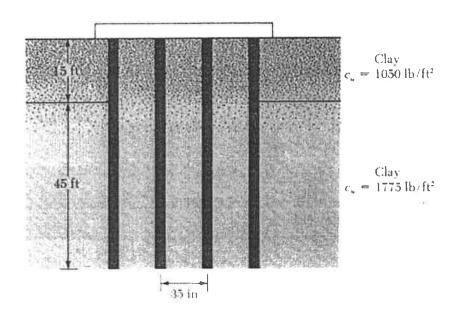



Figure: The pile Group

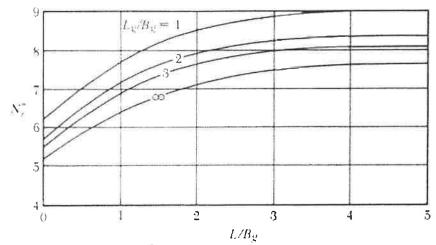



Figure: Variation of  $N_c^*$ 

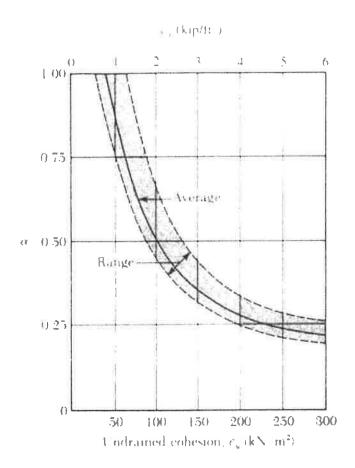



Figure: Variation of  $\, \alpha \,$  with undrained cohesion of clay